IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v253y2017i2d10.1007_s10479-015-2055-6.html
   My bibliography  Save this article

A POPMUSIC-based approach for the berth allocation problem under time-dependent limitations

Author

Listed:
  • Eduardo Lalla-Ruiz

    (University of La Laguna)

  • Stefan Voß

    (University of Hamburg
    Pontificia Universidad Católica de Valparaíso)

  • Christopher Expósito-Izquierdo

    (University of La Laguna)

  • Belén Melián-Batista

    (University of La Laguna)

  • J. Marcos Moreno-Vega

    (University of La Laguna)

Abstract

The goal of the berth allocation problem under time-dependent limitations is to assign and schedule incoming vessels to berthing positions taking into account tidal and water depth constraints. In order to solve this problem, we propose a POPMUSIC approach (Partial Optimization Metaheuristic Under Special Intensification Conditions) which includes the resolution of an appropriate mathematical programming formulation as an embedded procedure. This method is tested over realistic problem instances proposed in the literature. The computational experiments as well as the comparison with a reference algorithm for this problem reported in the related literature reveal that our approach is suitable to be used in real-world environments.

Suggested Citation

  • Eduardo Lalla-Ruiz & Stefan Voß & Christopher Expósito-Izquierdo & Belén Melián-Batista & J. Marcos Moreno-Vega, 2017. "A POPMUSIC-based approach for the berth allocation problem under time-dependent limitations," Annals of Operations Research, Springer, vol. 253(2), pages 871-897, June.
  • Handle: RePEc:spr:annopr:v:253:y:2017:i:2:d:10.1007_s10479-015-2055-6
    DOI: 10.1007/s10479-015-2055-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2055-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2055-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Cheong & K. Tan & D. Liu & C. Lin, 2010. "Multi-objective and prioritized berth allocation in container ports," Annals of Operations Research, Springer, vol. 180(1), pages 63-103, November.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Theo Notteboom & Jean-Paul Rodrigue, 2008. "Containerisation, Box Logistics and Global Supply Chains: The Integration of Ports and Liner Shipping Networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(1-2), pages 152-174, March.
    4. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    5. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    6. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2001. "Berth allocation planning in the public berth system by genetic algorithms," European Journal of Operational Research, Elsevier, vol. 131(2), pages 282-292, June.
    7. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    8. Lee, Der-Horng & Jin, Jian Gang, 2013. "Feeder vessel management at container transshipment terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 201-216.
    9. Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
    10. Alvim, Adriana C.F. & Taillard, Éric D., 2009. "POPMUSIC for the point feature label placement problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 396-413, January.
    11. Wiegmans, Bart W. & Rietveld, Piet & Nijkamp, Peter, 2001. "Container terminal services and quality," Serie Research Memoranda 0040, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. J Fernando Alvarez & Tore Longva & Erna S Engebrethsen, 2010. "A methodology to assess vessel berthing and speed optimization policies," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(4), pages 327-346, December.
    13. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    14. A Ostertag & K F Doerner & R F Hartl & E D Taillard & P Waelti, 2009. "POPMUSIC for a real-world large-scale vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 934-943, July.
    15. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    16. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    17. Buhrkal, Katja & Zuglian, Sara & Ropke, Stefan & Larsen, Jesper & Lusby, Richard, 2011. "Models for the discrete berth allocation problem: A computational comparison," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 461-473, July.
    18. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    19. Ilaria Vacca & Matteo Salani & Michel Bierlaire, 2013. "An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment," Transportation Science, INFORMS, vol. 47(2), pages 148-161, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    2. Guo, Peng & Weidinger, Felix & Boysen, Nils, 2019. "Parallel machine scheduling with job synchronization to enable efficient material flows in hub terminals," Omega, Elsevier, vol. 89(C), pages 110-121.
    3. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    4. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Guo, Zijian & Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Feng, Peng, 2021. "An integrated model for vessel traffic and deballasting scheduling in coal export terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Shuai Jia & Chung-Lun Li & Zhou Xu, 2019. "Managing Navigation Channel Traffic and Anchorage Area Utilization of a Container Port," Transportation Science, INFORMS, vol. 53(3), pages 728-745, May.
    7. Ji, Bin & Yuan, Xiaohui & Yuan, Yanbin & Lei, Xiaohui & Fernando, Tyrone & Iu, Herbert H.C., 2019. "Exact and heuristic methods for optimizing lock-quay system in inland waterway," European Journal of Operational Research, Elsevier, vol. 277(2), pages 740-755.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    2. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    3. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    4. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    5. Kramer, Arthur & Lalla-Ruiz, Eduardo & Iori, Manuel & Voß, Stefan, 2019. "Novel formulations and modeling enhancements for the dynamic berth allocation problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 170-185.
    6. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    7. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
    8. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    9. Qin, Tianbao & Du, Yuquan & Sha, Mei, 2016. "Evaluating the solution performance of IP and CP for berth allocation with time-varying water depth," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 167-185.
    10. Iris, Çağatay & Pacino, Dario & Ropke, Stefan & Larsen, Allan, 2015. "Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 75-97.
    11. Fernández, Elena & Munoz-Marquez, Manuel, 2022. "New formulations and solutions for the strategic berth template problem," European Journal of Operational Research, Elsevier, vol. 298(1), pages 99-117.
    12. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    13. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    14. Shangyao Yan & Chung-Cheng Lu & Jun-Hsiao Hsieh & Han-Chun Lin, 2019. "A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times," Networks and Spatial Economics, Springer, vol. 19(3), pages 903-927, September.
    15. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    16. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    17. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    18. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    20. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:253:y:2017:i:2:d:10.1007_s10479-015-2055-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.