IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v49y2013i1p201-216.html
   My bibliography  Save this article

Feeder vessel management at container transshipment terminals

Author

Listed:
  • Lee, Der-Horng
  • Jin, Jian Gang

Abstract

The feeder vessel management problem consists of designing preferred berthing positions and service time for cyclically visiting feeders, and allocating storage yard space to the transshipment flows between mother vessels and feeders. We consider the above three tactical decision problems simultaneously for a container transshipment terminal with an eye toward the quayside congestion and the housekeeping cost of container movements. The integrated problem is formulated as a mixed integer programming model and solved by a memetic heuristic approach. A comprehensive computational experiment is conducted to show the effectiveness of the heuristic and the improvement upon real-world terminal operations.

Suggested Citation

  • Lee, Der-Horng & Jin, Jian Gang, 2013. "Feeder vessel management at container transshipment terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 201-216.
  • Handle: RePEc:eee:transe:v:49:y:2013:i:1:p:201-216
    DOI: 10.1016/j.tre.2012.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554512000816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2012.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    2. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    3. Dong, Jing-Xin & Song, Dong-Ping, 2009. "Container fleet sizing and empty repositioning in liner shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 860-877, November.
    4. Cordeau, Jean-Francois & Gaudioso, Manlio & Laporte, Gilbert & Moccia, Luigi, 2007. "The service allocation problem at the Gioia Tauro Maritime Terminal," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1167-1184, January.
    5. Zhang, Chuqian & Liu, Jiyin & Wan, Yat-wah & Murty, Katta G. & Linn, Richard J., 2003. "Storage space allocation in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 37(10), pages 883-903, December.
    6. M Flavia Monaco & Luigi Moccia & Marcello Sammarra, 2009. "Operations Research for the management of a transhipment container terminal: The Gioia Tauro case," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(1), pages 7-35, March.
    7. Kim, Kap Hwan & Moon, Kyung Chan, 2003. "Berth scheduling by simulated annealing," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 541-560, July.
    8. Brian Slack & Claude Comtois & Robert McCalla, 2002. "Strategic alliances in the container shipping industry: a global perspective," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(1), pages 65-76, January.
    9. Lee, Der-Horng & Jin, Jian Gang & Chen, Jiang Hang, 2012. "Terminal and yard allocation problem for a container transshipment hub with multiple terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 516-528.
    10. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    11. Hwan Kim, Kap & Bae Kim, Hong, 1999. "Segregating space allocation models for container inventories in port container terminals," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 415-423, March.
    12. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    13. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingcheng Zeng & Yuanjun Feng & Zigen Chen, 2017. "Optimizing berth allocation and storage space in direct transshipment operations at container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 474-503, August.
    2. Tao, Yi & Lee, Chung-Yee, 2015. "Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 34-50.
    3. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    4. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    5. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    6. Yan, Baicheng & Jin, Jian Gang & Zhu, Xiaoning & Lee, Der-Horng & Wang, Li & Wang, Hua, 2020. "Integrated planning of train schedule template and container transshipment operation in seaport railway terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    7. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    8. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    9. H. L. Ma & S. H. Chung & H. K. Chan & Li Cui, 2019. "An integrated model for berth and yard planning in container terminals with multi-continuous berth layout," Annals of Operations Research, Springer, vol. 273(1), pages 409-431, February.
    10. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    11. Zhang, An & Qi, Xiangtong & Li, Guanhua, 2020. "Machine scheduling with soft precedence constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 491-505.
    12. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    13. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    14. Nils Boysen & Simon Emde & Konrad Stephan & Markus Weiß, 2015. "Synchronization in hub terminals with the circular arrangement problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 454-469, September.
    15. Eduardo Lalla-Ruiz & Stefan Voß & Christopher Expósito-Izquierdo & Belén Melián-Batista & J. Marcos Moreno-Vega, 2017. "A POPMUSIC-based approach for the berth allocation problem under time-dependent limitations," Annals of Operations Research, Springer, vol. 253(2), pages 871-897, June.
    16. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    2. Lu Zhen & Shuaian Wang & Kai Wang, 2016. "Terminal allocation problem in a transshipment hub considering bunker consumption," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(7), pages 529-548, October.
    3. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    4. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    5. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Tao, Yi & Lee, Chung-Yee, 2015. "Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 34-50.
    7. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    8. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    9. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    10. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    11. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    12. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    13. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    14. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    15. H. L. Ma & S. H. Chung & H. K. Chan & Li Cui, 2019. "An integrated model for berth and yard planning in container terminals with multi-continuous berth layout," Annals of Operations Research, Springer, vol. 273(1), pages 409-431, February.
    16. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    17. Zhen, Lu & Xu, Zhou & Wang, Kai & Ding, Yi, 2016. "Multi-period yard template planning in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 700-719.
    18. Iris, Çağatay & Pacino, Dario & Ropke, Stefan & Larsen, Allan, 2015. "Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 75-97.
    19. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    20. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:49:y:2013:i:1:p:201-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.