IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v19y2019i3d10.1007_s11067-018-9434-x.html
   My bibliography  Save this article

A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times

Author

Listed:
  • Shangyao Yan

    (National Central University)

  • Chung-Cheng Lu

    (National Chiao Tung University)

  • Jun-Hsiao Hsieh

    (National Central University)

  • Han-Chun Lin

    (National Central University)

Abstract

This study proposes a berth-flow network modeling approach to deal with the dynamic berth allocation problem (DBAP) with stochastic vessel arrival times. In this approach, uncertain vessel arrival times are represented using discrete probability distributions and a flexible berth allocation scheme based on the blocking plan concept is incorporated into the model to effectively utilize wharf space. This new model is referred to as the stochastic dynamic (vessel arrival) and flexible (berth space) berth allocation problem (SDFBAP) model. The aim is to minimize the sum of the expected values of unanticipated schedule delay costs and the penalties for being unable to service all vessels within the planning horizon. The proposed model is formulated as an integer multi-commodity network flow problem which can be solved with off-the-shelf solvers. Computational experiments are conducted using a real example to demonstrate the effectiveness and efficiency of the SDFBAP model. A simulation-based approach is adopted to evaluate the SDFBAP model. A number of scenario analyses are also conducted to gain insight into important model parameters.

Suggested Citation

  • Shangyao Yan & Chung-Cheng Lu & Jun-Hsiao Hsieh & Han-Chun Lin, 2019. "A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times," Networks and Spatial Economics, Springer, vol. 19(3), pages 903-927, September.
  • Handle: RePEc:kap:netspa:v:19:y:2019:i:3:d:10.1007_s11067-018-9434-x
    DOI: 10.1007/s11067-018-9434-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-018-9434-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-018-9434-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitrios Tsiotas & Serafeim Polyzos, 2015. "Analyzing the Maritime Transportation System in Greece: a Complex Network Approach," Networks and Spatial Economics, Springer, vol. 15(4), pages 981-1010, December.
    2. C. Cheong & K. Tan & D. Liu & C. Lin, 2010. "Multi-objective and prioritized berth allocation in container ports," Annals of Operations Research, Springer, vol. 180(1), pages 63-103, November.
    3. Jam Dai & Wuqin Lin & Rajeeva Moorthy & Chung-Piaw Teo, 2008. "Berth Allocation Planning Optimization in Container Terminals," International Series in Operations Research & Management Science, in: Christopher S. Tang & Chung-Piaw Teo & Kwok-Kee Wei (ed.), Supply Chain Analysis, pages 69-104, Springer.
    4. Elio Canestrelli & Marco Corazza & Giuseppe Nadai & Raffaele Pesenti, 2017. "Managing the Ship Movements in the Port of Venice," Networks and Spatial Economics, Springer, vol. 17(3), pages 861-887, September.
    5. Han, Xiao-le & Lu, Zhi-qiang & Xi, Li-feng, 2010. "A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1327-1340, December.
    6. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    7. Kim, Kap Hwan & Moon, Kyung Chan, 2003. "Berth scheduling by simulated annealing," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 541-560, July.
    8. Ya Xu & Qiushuang Chen & Xiongwen Quan, 2012. "Robust berth scheduling with uncertain vessel delay and handling time," Annals of Operations Research, Springer, vol. 192(1), pages 123-140, January.
    9. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    10. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    11. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    12. Yan, Shangyao & Chi, Chin-Jen & Tang, Ching-Hui, 2006. "Inter-city bus routing and timetable setting under stochastic demands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 572-586, August.
    13. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    14. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2001. "Berth allocation planning in the public berth system by genetic algorithms," European Journal of Operational Research, Elsevier, vol. 131(2), pages 282-292, June.
    15. Lee, Der-Horng & Chen, Jiang Hang & Cao, Jin Xin, 2010. "The continuous Berth Allocation Problem: A Greedy Randomized Adaptive Search Solution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1017-1029, November.
    16. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    17. Imai, Akio & Nishimura, Etsuko & Hattori, Masahiro & Papadimitriou, Stratos, 2007. "Berth allocation at indented berths for mega-containerships," European Journal of Operational Research, Elsevier, vol. 179(2), pages 579-593, June.
    18. Shangyao Yan & Ching-Hui Tang, 2008. "An Integrated Framework for Intercity Bus Scheduling Under Stochastic Bus Travel Times," Transportation Science, INFORMS, vol. 42(3), pages 318-335, August.
    19. Buhrkal, Katja & Zuglian, Sara & Ropke, Stefan & Larsen, Jesper & Lusby, Richard, 2011. "Models for the discrete berth allocation problem: A computational comparison," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 461-473, July.
    20. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2003. "Berth allocation with service priority," Transportation Research Part B: Methodological, Elsevier, vol. 37(5), pages 437-457, June.
    21. Yan, Shangyao & Tang, Ching-Hui, 2007. "A heuristic approach for airport gate assignments for stochastic flight delays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 547-567, July.
    22. M. Flavia Monaco & Marcello Sammarra, 2007. "The Berth Allocation Problem: A Strong Formulation Solved by a Lagrangean Approach," Transportation Science, INFORMS, vol. 41(2), pages 265-280, May.
    23. Imai, Akio & Sun, Xin & Nishimura, Etsuko & Papadimitriou, Stratos, 2005. "Berth allocation in a container port: using a continuous location space approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 199-221, March.
    24. Lee, Yusin & Chen, Chuen-Yih, 2009. "An optimization heuristic for the berth scheduling problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 500-508, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Chung-Cheng & Diabat, Ali & Li, Yi-Ting & Yang, Yu-Min, 2022. "Combined passenger and parcel transportation using a mixed fleet of electric and gasoline vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Jianan Yin & Yuanyuan Ma & Yuxin Hu & Ke Han & Suwan Yin & Hua Xie, 2021. "Delay, Throughput and Emission Tradeoffs in Airport Runway Scheduling with Uncertainty Considerations," Networks and Spatial Economics, Springer, vol. 21(1), pages 85-122, March.
    3. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Dawn Russell & Kusumal Ruamsook & Violeta Roso, 2022. "Managing supply chain uncertainty by building flexibility in container port capacity: a logistics triad perspective and the COVID-19 case," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 92-113, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    2. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    3. Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
    4. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    5. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    6. Shih-Wei Lin & Ching-Jung Ting & Kun-Chih Wu, 2018. "Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 740-763, December.
    7. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2013. "Marine container terminal configurations for efficient handling of mega-containerships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 141-158.
    8. Changchun Liu & Xi Xiang & Li Zheng, 2017. "Two decision models for berth allocation problem under uncertainty considering service level," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 312-344, December.
    9. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
    10. Nitish Umang & Michel Bierlaire & Alan L. Erera, 2017. "Real-time management of berth allocation with stochastic arrival and handling times," Journal of Scheduling, Springer, vol. 20(1), pages 67-83, February.
    11. Yuquan Du & Qiushuang Chen & Jasmine Siu Lee Lam & Ya Xu & Jin Xin Cao, 2015. "Modeling the Impacts of Tides and the Virtual Arrival Policy in Berth Allocation," Transportation Science, INFORMS, vol. 49(4), pages 939-956, November.
    12. Xiang, Xi & Liu, Changchun & Miao, Lixin, 2017. "A bi-objective robust model for berth allocation scheduling under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 294-319.
    13. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    14. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    15. Changchun Liu & Xi Xiang & Canrong Zhang & Li Zheng, 2016. "A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-28, December.
    16. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    17. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    18. Qin, Tianbao & Du, Yuquan & Sha, Mei, 2016. "Evaluating the solution performance of IP and CP for berth allocation with time-varying water depth," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 167-185.
    19. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    20. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:19:y:2019:i:3:d:10.1007_s11067-018-9434-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.