IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v21y2021i1d10.1007_s11067-020-09508-3.html
   My bibliography  Save this article

Delay, Throughput and Emission Tradeoffs in Airport Runway Scheduling with Uncertainty Considerations

Author

Listed:
  • Jianan Yin

    (Nanjing University of Aeronautics and Astronautics
    Imperial College London)

  • Yuanyuan Ma

    (The 28th Research Institute of China Electronics Technology Group Corporation)

  • Yuxin Hu

    (The 28th Research Institute of China Electronics Technology Group Corporation)

  • Ke Han

    (Southwest Jiaotong University)

  • Suwan Yin

    (Imperial College London)

  • Hua Xie

    (Nanjing University of Aeronautics and Astronautics)

Abstract

Runway systems are among the most stringent bottlenecks at global hub airports, which have been identified as a major source of airport inefficiency. Runway system inefficiencies are manifested in multiple dimensions such as delay, throughput reduction and excessive emission, whose tradeoffs are investigated in this paper as part of an airport runway scheduling problem in the presence of uncertainty. We formulate a multi-objective optimization model aiming to minimize flight delays, maximize airport throughput, and minimize aircraft emissions, subject to a variety of constraints such as minimum separation, time window, runway occupancy and flight turnaround. The computational performance is enhanced with an efficient multi-objective evolutionary algorithm, with two mechanisms of adaptive and controllable time-coding and objective-guided individual selection. The proposed method is flexible in adjusting conservatism when it comes to optimization with uncertainty, and offers a set of Pareto optimal solutions for different stakeholders without using scalarization of different objectives. A real-world case study is carried out for one of the world’s buiest airports, Shanghai Pudong, under the case of 2 runways, 2 operation types, 12 uncertain conditions and 4 tradeoff scenarios. The computational results show that the proposed optimized method has overall advantages in improving the runway scheduling performance over some meta-heuristics and the First Come First Served strategy. The tradeoff analysis reveals that the minimum delay schedule is preferable for balancing delay, throughtput and emission. The findings provide managerial insights regarding traffic management measures for different stakeholders at high-density airports.

Suggested Citation

  • Jianan Yin & Yuanyuan Ma & Yuxin Hu & Ke Han & Suwan Yin & Hua Xie, 2021. "Delay, Throughput and Emission Tradeoffs in Airport Runway Scheduling with Uncertainty Considerations," Networks and Spatial Economics, Springer, vol. 21(1), pages 85-122, March.
  • Handle: RePEc:kap:netspa:v:21:y:2021:i:1:d:10.1007_s11067-020-09508-3
    DOI: 10.1007/s11067-020-09508-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-020-09508-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-020-09508-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamsa Balakrishnan & Bala G. Chandran, 2010. "Algorithms for Scheduling Runway Operations Under Constrained Position Shifting," Operations Research, INFORMS, vol. 58(6), pages 1650-1665, December.
    2. Lieder, Alexander & Stolletz, Raik, 2016. "Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 167-188.
    3. Vadlamani, Satish & Hosseini, Seyedmohsen, 2014. "A novel heuristic approach for solving aircraft landing problem with single runway," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 144-148.
    4. Sebastián Lozano & Ester Gutiérrez, 2011. "Efficiency Analysis and Target Setting of Spanish Airports," Networks and Spatial Economics, Springer, vol. 11(1), pages 139-157, March.
    5. Bennell, Julia A. & Mesgarpour, Mohammad & Potts, Chris N., 2017. "Dynamic scheduling of aircraft landings," European Journal of Operational Research, Elsevier, vol. 258(1), pages 315-327.
    6. J E Beasley & J Sonander & P Havelock, 2001. "Scheduling aircraft landings at London Heathrow using a population heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 483-493, May.
    7. Samà, Marcella & D’Ariano, Andrea & Pacciarelli, Dario, 2013. "Rolling horizon approach for aircraft scheduling in the terminal control area of busy airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 140-155.
    8. Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2007. "Hybrid Metaheuristics to Aid Runway Scheduling at London Heathrow Airport," Transportation Science, INFORMS, vol. 41(1), pages 90-106, February.
    9. Shangyao Yan & Chung-Cheng Lu & Jun-Hsiao Hsieh & Han-Chun Lin, 2019. "A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times," Networks and Spatial Economics, Springer, vol. 19(3), pages 903-927, September.
    10. Samà, Marcella & D'Ariano, Andrea & Corman, Francesco & Pacciarelli, Dario, 2018. "Coordination of scheduling decisions in the management of airport airspace and taxiway operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 398-411.
    11. Shangyao Yan & Fei-Yen Hsiao & Yi-Chun Chen, 2015. "Inter-School Bus Scheduling Under Stochastic Travel Times," Networks and Spatial Economics, Springer, vol. 15(4), pages 1049-1074, December.
    12. Pasquale Avella & Maurizio Boccia & Carlo Mannino & Igor Vasilyev, 2017. "Time-Indexed Formulations for the Runway Scheduling Problem," Transportation Science, INFORMS, vol. 51(4), pages 1196-1209, November.
    13. Sabar, Nasser R. & Kendall, Graham, 2015. "An iterated local search with multiple perturbation operators and time varying perturbation strength for the aircraft landing problem," Omega, Elsevier, vol. 56(C), pages 88-98.
    14. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    15. Jianan Yin & Minghua Hu & Yuanyuan Ma & Ke Han & Dan Chen, 2019. "Airport Taxi Situation Awareness with a Macroscopic Distribution Network Analysis," Networks and Spatial Economics, Springer, vol. 19(3), pages 669-695, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    2. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    3. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    4. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    5. Pohl, Maximilian & Artigues, Christian & Kolisch, Rainer, 2022. "Solving the time-discrete winter runway scheduling problem: A column generation and constraint programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 674-689.
    6. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    7. Lieder, Alexander & Stolletz, Raik, 2016. "Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 167-188.
    8. Zhang, Junfeng & Zhao, Pengli & Zhang, Yu & Dai, Ximei & Sui, Dong, 2020. "Criteria selection and multi-objective optimization of aircraft landing problem," Journal of Air Transport Management, Elsevier, vol. 82(C).
    9. Pasquale Avella & Maurizio Boccia & Carlo Mannino & Igor Vasilyev, 2017. "Time-Indexed Formulations for the Runway Scheduling Problem," Transportation Science, INFORMS, vol. 51(4), pages 1196-1209, November.
    10. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    11. Salehipour, Amir, 2020. "An algorithm for single- and multiple-runway aircraft landing problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 179-191.
    12. Daniel Karapetyan & Jason A. D. Atkin & Andrew J. Parkes & Juan Castro-Gutierrez, 2017. "Lessons from building an automated pre-departure sequencer for airports," Annals of Operations Research, Springer, vol. 252(2), pages 435-453, May.
    13. Hancerliogullari, Gulsah & Rabadi, Ghaith & Al-Salem, Ameer H. & Kharbeche, Mohamed, 2013. "Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 39-48.
    14. Gui, Dongdong & Le, Meilong & Huang, Zhouchun & Zhang, Junfeng & D’Ariano, Andrea, 2023. "Optimal aircraft arrival scheduling with continuous descent operations in busy terminal maneuvering areas," Journal of Air Transport Management, Elsevier, vol. 107(C).
    15. Samà, Marcella & D'Ariano, Andrea & Corman, Francesco & Pacciarelli, Dario, 2018. "Coordination of scheduling decisions in the management of airport airspace and taxiway operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 398-411.
    16. Guépet, Julien & Briant, Olivier & Gayon, Jean-Philippe & Acuna-Agost, Rodrigo, 2017. "Integration of aircraft ground movements and runway operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 131-149.
    17. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    18. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    19. Bo Xu & Weimin Ma & Hui Huang & Lei Yue, 2016. "Weighted Constrained Position Shift Model for Aircraft Arrival Sequencing and Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-22, August.
    20. Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2009. "An examination of take-off scheduling constraints at London Heathrow airport," Public Transport, Springer, vol. 1(3), pages 169-187, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:21:y:2021:i:1:d:10.1007_s11067-020-09508-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.