IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v227y2015i1p63-9110.1007-s10479-013-1420-6.html
   My bibliography  Save this article

Optimal design of multi-echelon supply chain networks under normally distributed demand

Author

Listed:
  • Konstantinos Petridis

Abstract

This paper addresses the optimal design of a multiproduct, multi-echelon supply network under uncertainty of demand. The network consists of multiproduct production sites, warehouses and distribution centers and decisions about the selection of facilities and their capacity are taken. Furthermore, information about the flows of products transferred and the safety stock at each distribution center is derived. The lead time of an order to a customer is computed, using the probabilities of overstocking and understocking. All these decisions are incorporated into a single period mixed integer non-linear programming problem (MINLP) which minimizes cost. Linearization techniques for selected highly non-linear terms of the models are explored in order to reduce the computational effort for the solution of the model. Finally, a sensitivity analysis is performed by changing product demand parameters and assessing their effect on the supply chain structure. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Konstantinos Petridis, 2015. "Optimal design of multi-echelon supply chain networks under normally distributed demand," Annals of Operations Research, Springer, vol. 227(1), pages 63-91, April.
  • Handle: RePEc:spr:annopr:v:227:y:2015:i:1:p:63-91:10.1007/s10479-013-1420-6
    DOI: 10.1007/s10479-013-1420-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1420-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1420-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    2. Gérard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
    3. Georgiadis, Michael C. & Tsiakis, Panagiotis & Longinidis, Pantelis & Sofioglou, Maria K., 2011. "Optimal design of supply chain networks under uncertain transient demand variations," Omega, Elsevier, vol. 39(3), pages 254-272, June.
    4. Tsiakis, Panagiotis & Papageorgiou, Lazaros G., 2008. "Optimal production allocation and distribution supply chain networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 468-483, February.
    5. Mark Daskin & Collette Coullard & Zuo-Jun Shen, 2002. "An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results," Annals of Operations Research, Springer, vol. 110(1), pages 83-106, February.
    6. Miranda, Pablo A. & Garrido, Rodrigo A., 2004. "Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 183-207, May.
    7. Elias Olivares-Benitez & José González-Velarde & Roger Ríos-Mercado, 2012. "A supply chain design problem with facility location and bi-objective transportation choices," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 729-753, October.
    8. Gérard P. Cachon & Paul H. Zipkin, 1999. "Competitive and Cooperative Inventory Policies in a Two-Stage Supply Chain," Management Science, INFORMS, vol. 45(7), pages 936-953, July.
    9. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    10. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    11. Zuo-Jun Max Shen & Collette Coullard & Mark S. Daskin, 2003. "A Joint Location-Inventory Model," Transportation Science, INFORMS, vol. 37(1), pages 40-55, February.
    12. S. Özekici & M. Parlar, 1999. "Inventory models with unreliable suppliersin a random environment," Annals of Operations Research, Springer, vol. 91(0), pages 123-136, January.
    13. Stephen C. Graves & Brian T. Tomlin, 2003. "Process Flexibility in Supply Chains," Management Science, INFORMS, vol. 49(7), pages 907-919, July.
    14. Chen, Chien-Wei & Fan, Yueyue, 2012. "Bioethanol supply chain system planning under supply and demand uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 150-164.
    15. Ganeshan, Ram, 1999. "Managing supply chain inventories: A multiple retailer, one warehouse, multiple supplier model," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 341-354, March.
    16. Chaabane, A. & Ramudhin, A. & Paquet, M., 2012. "Design of sustainable supply chains under the emission trading scheme," International Journal of Production Economics, Elsevier, vol. 135(1), pages 37-49.
    17. Anna Nagurney & Amir Masoumi & Min Yu, 2012. "Supply chain network operations management of a blood banking system with cost and risk minimization," Computational Management Science, Springer, vol. 9(2), pages 205-231, May.
    18. Uskonen, Jukka & Tenhiälä, Antti, 2012. "The price of responsiveness: Cost analysis of change orders in make-to-order manufacturing," International Journal of Production Economics, Elsevier, vol. 135(1), pages 420-429.
    19. Baud-Lavigne, Bertrand & Agard, Bruno & Penz, Bernard, 2012. "Mutual impacts of product standardization and supply chain design," International Journal of Production Economics, Elsevier, vol. 135(1), pages 50-60.
    20. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Petridis & Prasanta Kumar Dey & Ali Emrouznejad, 2017. "A branch and efficiency algorithm for the optimal design of supply chain networks," Annals of Operations Research, Springer, vol. 253(1), pages 545-571, June.
    2. Aaron Guerrero Campanur & Elias Olivares-Benitez & Pablo A. Miranda & Rodolfo Eleazar Perez-Loaiza & Jose Humberto Ablanedo-Rosas, 2018. "Design of a Logistics Nonlinear System for a Complex, Multiechelon, Supply Chain Network with Uncertain Demands," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    3. Barros, Júlio & Cortez, Paulo & Carvalho, M. Sameiro, 2021. "A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process," Operations Research Perspectives, Elsevier, vol. 8(C).
    4. Reza Ramezanian & Sadjad Khalesi, 2021. "Integration of multi-product supply chain network design and assembly line balancing," Operational Research, Springer, vol. 21(1), pages 453-483, March.
    5. De, Arijit & Mogale, D.G. & Zhang, Mengdi & Pratap, Saurabh & Kumar, Sri Krishna & Huang, George Q., 2020. "Multi-period multi-echelon inventory transportation problem considering stakeholders behavioural tendencies," International Journal of Production Economics, Elsevier, vol. 225(C).
    6. Yi Liao & Ali Diabat & Chaher Alzaman & Yiqiang Zhang, 2020. "Modeling and heuristics for production time crashing in supply chain network design," Annals of Operations Research, Springer, vol. 288(1), pages 331-361, May.
    7. Alzaman, Chaher & Zhang, Zhi-Hai & Diabat, Ali, 2018. "Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics," International Journal of Production Economics, Elsevier, vol. 203(C), pages 203-215.
    8. Shuihua Han & Yue Jiang & Ling Zhao & Stephen C. H. Leung & Zongwei Luo, 2020. "Weight reduction technology and supply chain network design under carbon emission restriction," Annals of Operations Research, Springer, vol. 290(1), pages 567-590, July.
    9. Iman Kazemian & Samin Aref, 2016. "Multi-echelon Supply Chain Flexibility Enhancement Through Detecting Bottlenecks," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 17(4), pages 357-372, December.
    10. Konstantinos Petridis & Garyfallos Arabatzis & Angelo Sifaleras, 2020. "Mathematical optimization models for fuelwood production," Annals of Operations Research, Springer, vol. 294(1), pages 59-74, November.
    11. Ardavan Babaei & Majid Khedmati & Mohammad Reza Akbari Jokar, 2023. "A new branch and efficiency algorithm for an optimal design of the supply chain network in view of resilience, inequity and traffic congestion," Annals of Operations Research, Springer, vol. 321(1), pages 49-78, February.
    12. Peyman Taki & Farnaz Barzinpour & Ebrahim Teimoury, 2016. "Risk-pooling strategy, lead time, delivery reliability and inventory control decisions in a stochastic multi-objective supply chain network design," Annals of Operations Research, Springer, vol. 244(2), pages 619-646, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    2. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    3. Saeid Rezaei & Amirsaman Kheirkhah, 2018. "A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations," Computational and Mathematical Organization Theory, Springer, vol. 24(1), pages 51-98, March.
    4. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    5. Puntipa Punyim & Ampol Karoonsoontawong & Avinash Unnikrishnan & Chi Xie, 2018. "Tabu Search Heuristic for Joint Location-Inventory Problem with Stochastic Inventory Capacity and Practicality Constraints," Networks and Spatial Economics, Springer, vol. 18(1), pages 51-84, March.
    6. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    7. Schuster Puga, Matías & Tancrez, Jean-Sébastien, 2017. "A heuristic algorithm for solving large location–inventory problems with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 259(2), pages 413-423.
    8. Diabat, Ali & Al-Salem, Mohammed, 2015. "An integrated supply chain problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 330-338.
    9. Ding, Huiping & Guo, Baochun & Liu, Zhishuo, 2011. "Information sharing and profit allotment based on supply chain cooperation," International Journal of Production Economics, Elsevier, vol. 133(1), pages 70-79, September.
    10. Anantaram Balakrishnan & Joseph Geunes & Michael S. Pangburn, 2004. "Coordinating Supply Chains by Controlling Upstream Variability Propagation," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 163-183, July.
    11. Canan Savaskan & Charles J. Corbett, 2001. "Contracting and Coordination in Closed-Loop Supply Chains," Discussion Papers 1327, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    12. Jeet, Vishv & Kutanoglu, Erhan, 2018. "Part commonality effects on integrated network design and inventory models for low-demand service parts logistics systems," International Journal of Production Economics, Elsevier, vol. 206(C), pages 46-58.
    13. Pablo Miranda & Rodrigo Garrido, 2006. "A Simultaneous Inventory Control and Facility Location Model with Stochastic Capacity Constraints," Networks and Spatial Economics, Springer, vol. 6(1), pages 39-53, March.
    14. Soheyl Khalilpourazari & Alireza Arshadi Khamseh, 2019. "Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application," Annals of Operations Research, Springer, vol. 283(1), pages 355-393, December.
    15. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    16. Burcu B. Keskin & Halit Üster, 2012. "Production/distribution system design with inventory considerations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(2), pages 172-195, March.
    17. Zhang, Zhi-Hai & Unnikrishnan, Avinash, 2016. "A coordinated location-inventory problem in closed-loop supply chain," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 127-148.
    18. Escalona, P. & Marianov, V. & Ordóñez, F. & Stegmaier, R., 2018. "On the effect of inventory policies on distribution network design with several demand classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 229-240.
    19. Li, Xiuhui & Wang, Qinan, 2007. "Coordination mechanisms of supply chain systems," European Journal of Operational Research, Elsevier, vol. 179(1), pages 1-16, May.
    20. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:227:y:2015:i:1:p:63-91:10.1007/s10479-013-1420-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.