IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v135y2012i1p37-49.html
   My bibliography  Save this article

Design of sustainable supply chains under the emission trading scheme

Author

Listed:
  • Chaabane, A.
  • Ramudhin, A.
  • Paquet, M.

Abstract

Increase in environmental concerns together with legislations are forcing industries to take a fresh look at the impact of their supply chain operations on the environment. This paper introduces a mixed-integer linear programming based framework for sustainable supply chain design that considers life cycle assessment (LCA) principles in addition to the traditional material balance constraints at each node in the supply chain. Indeed, the framework distinguishes between solid and liquid wastes, as well as gaseous emissions due to various production processes and transportation systems. The framework is used to evaluate the tradeoffs between economic and environmental objectives under various cost and operating strategies in the aluminum industry. The results suggest that current legislation and Emission Trading Schemes (ETS) must be strengthened and harmonized at the global level in order to drive a meaningful environmental strategy. Moreover, the model demonstrates that efficient carbon management strategies will help decision makers to achieve sustainability objectives in a cost-effective manner.

Suggested Citation

  • Chaabane, A. & Ramudhin, A. & Paquet, M., 2012. "Design of sustainable supply chains under the emission trading scheme," International Journal of Production Economics, Elsevier, vol. 135(1), pages 37-49.
  • Handle: RePEc:eee:proeco:v:135:y:2012:i:1:p:37-49
    DOI: 10.1016/j.ijpe.2010.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527310004184
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    2. Min, Hokey & Melachrinoudis, Emanuel, 1999. "The relocation of a hybrid manufacturing/distribution facility from supply chain perspectives: a case study," Omega, Elsevier, vol. 27(1), pages 75-85, February.
    3. Frota Neto, J. Quariguasi & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & van Heck, E., 2008. "Designing and evaluating sustainable logistics networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 195-208, February.
    4. Sabri, Ehap H. & Beamon, Benita M., 2000. "A multi-objective approach to simultaneous strategic and operational planning in supply chain design," Omega, Elsevier, vol. 28(5), pages 581-598, October.
    5. Sheu, Jiuh-Biing & Chou, Yi-Hwa & Hu, Chun-Chia, 2005. "An integrated logistics operational model for green-supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 287-313, July.
    6. Sheu, Jiuh-Biing, 2008. "Green supply chain management, reverse logistics and nuclear power generation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 19-46, January.
    7. Ferretti, I. & Zanoni, S. & Zavanella, L. & Diana, A., 2007. "Greening the aluminium supply chain," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 236-245, July.
    8. Schultmann, Frank & Zumkeller, Moritz & Rentz, Otto, 2006. "Modeling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1033-1050, June.
    9. Zugang Liu & Trisha Woolley & Anna Nagurney, 2006. "Optimal Endogenous Carbon Taxes for Electric Power Supply Chains with Power Plants," Computing in Economics and Finance 2006 322, Society for Computational Economics.
    10. Gunasekaran, A. & Patel, C. & McGaughey, Ronald E., 2004. "A framework for supply chain performance measurement," International Journal of Production Economics, Elsevier, vol. 87(3), pages 333-347, February.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:135:y:2012:i:1:p:37-49. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.