IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v201y2012i1p367-38110.1007-s10479-012-1192-4.html
   My bibliography  Save this article

Interactive fuzzy goal programming for a multi-objective closed-loop logistics network

Author

Listed:
  • Mehrdad Mehrbod
  • Nan Tu
  • Lixin Miao
  • Dai Wenjing

Abstract

Over the last decade, there has been increased attention to closed-loop logistics networks. Environmental legislation requires companies to be more responsible by collecting used products from customers. Companies can also benefit from savings that are related to recovering and recycling used products. Unlike previous studies, which only consider single products or a single period of time in multi-objective problems, this paper considers a multi-product multi-period closed-loop logistics network with different types of facilities. A multi-objective mixed-integer nonlinear programming formulation is developed to minimize the total cost, the delivery time of new products, and the collection time of used products. Thus, this model better approximates real-life applications of closed-loop logistics problems. Interactive fuzzy goal programming (IFGP) is applied to solve the model for handling multiple objective problems with conflicting objectives and to address the imprecise nature of decision-makers’ aspiration levels for goals. The results from computational experiments performed here show that by changing the upper or lower bound of each objective function, one can obtain a better final solution of the problem and also can provide more options for decision makers to choose from based on their situation. Finally, the utilization rate of facilities is shown to be an important indicator when designing a logistics network. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Mehrdad Mehrbod & Nan Tu & Lixin Miao & Dai Wenjing, 2012. "Interactive fuzzy goal programming for a multi-objective closed-loop logistics network," Annals of Operations Research, Springer, vol. 201(1), pages 367-381, December.
  • Handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:367-381:10.1007/s10479-012-1192-4
    DOI: 10.1007/s10479-012-1192-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1192-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1192-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V Jayaraman & V D R Guide & R Srivastava, 1999. "A closed-loop logistics model for remanufacturing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(5), pages 497-508, May.
    2. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    3. Werners, Brigitte, 1987. "Interactive multiple objective programming subject to flexible constraints," European Journal of Operational Research, Elsevier, vol. 31(3), pages 342-349, September.
    4. Marin, Alfredo & Pelegrin, Blas, 1998. "The return plant location problem: Modelling and resolution," European Journal of Operational Research, Elsevier, vol. 104(2), pages 375-392, January.
    5. Hu, Chao-Fang & Teng, Chang-Jun & Li, Shao-Yuan, 2007. "A fuzzy goal programming approach to multi-objective optimization problem with priorities," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1319-1333, February.
    6. Jerónimo Aznar & Francisco Guijarro & José Moreno-Jiménez, 2011. "Mixed valuation methods: a combined AHP-GP procedure for individual and group multicriteria agricultural valuation," Annals of Operations Research, Springer, vol. 190(1), pages 221-238, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Wei & Jing Zhao, 2016. "Pricing decisions for substitutable products with horizontal and vertical competition in fuzzy environments," Annals of Operations Research, Springer, vol. 242(2), pages 505-528, July.
    2. Morano, Pierluigi & Tajani, Francesco, 2018. "Saving soil and financial feasibility. A model to support public-private partnerships in the regeneration of abandoned areas," Land Use Policy, Elsevier, vol. 73(C), pages 40-48.
    3. R.S. Rogulin, 2020. "Modeling of Promising Interaction Between a Timber Industry Enterprise and a Commodity Exchange in Russia," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 19(4), pages 489-511.
    4. Anil Jindal & Kuldip Singh Sangwan, 2017. "Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors," Annals of Operations Research, Springer, vol. 257(1), pages 95-120, October.
    5. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    6. Ozden Tozanli & Gazi Murat Duman & Elif Kongar & Surendra M. Gupta, 2017. "Environmentally Concerned Logistics Operations in Fuzzy Environment: A Literature Survey," Logistics, MDPI, vol. 1(1), pages 1-42, June.
    7. A. Mohammed, 2020. "Towards a sustainable assessment of suppliers: an integrated fuzzy TOPSIS-possibilistic multi-objective approach," Annals of Operations Research, Springer, vol. 293(2), pages 639-668, October.
    8. Yongbo Li & Devika Kannan & P. C. Jha & Kiran Garg & Jyoti Darbari & Neha Agarwal, 2023. "Design of a multi echelon product recovery embeded reverse logistics network for multi products and multi periods," Annals of Operations Research, Springer, vol. 323(1), pages 131-152, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    2. Kristin Sahyouni & R. Canan Savaskan & Mark S. Daskin, 2007. "A Facility Location Model for Bidirectional Flows," Transportation Science, INFORMS, vol. 41(4), pages 484-499, November.
    3. Özceylan, Eren & Paksoy, Turan & Bektaş, Tolga, 2014. "Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 142-164.
    4. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    5. Min, Hokey & Ko, Hyun-Jeung, 2008. "The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers," International Journal of Production Economics, Elsevier, vol. 113(1), pages 176-192, May.
    6. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2017. "Closed-loop supply chain network design under uncertain quality status: Case of durable products," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 470-486.
    7. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    8. L K Chu & Y Shi & S Lin & D Sculli & J Ni, 2010. "Fuzzy chance-constrained programming model for a multi-echelon reverse logistics network for household appliances," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 551-560, April.
    9. Francas, David & Minner, Stefan, 2009. "Manufacturing network configuration in supply chains with product recovery," Omega, Elsevier, vol. 37(4), pages 757-769, August.
    10. Ching-Chin Chern & Hsin-Mei Wang & Kwei-Long Huang, 2017. "A heuristic master planning algorithm for recycling supply chain management," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 985-1003, April.
    11. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    12. Schultmann, Frank & Zumkeller, Moritz & Rentz, Otto, 2006. "Modeling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1033-1050, June.
    13. M I Salema & A P B Póvoa & A Q Novais, 2006. "A warehouse-based design model for reverse logistics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 615-629, June.
    14. Alessio Ishizaka & Sharfuddin Ahmed Khan & Siamak Kheybari & Syed Imran Zaman, 2023. "Supplier selection in closed loop pharma supply chain: a novel BWM–GAIA framework," Annals of Operations Research, Springer, vol. 324(1), pages 13-36, May.
    15. Min, Hokey & Jeung Ko, Hyun & Seong Ko, Chang, 2006. "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Elsevier, vol. 34(1), pages 56-69, January.
    16. M. Tadaros & A. Migdalas & B. Samuelsson & A. Segerstedt, 2022. "Location of facilities and network design for reverse logistics of lithium-ion batteries in Sweden," Operational Research, Springer, vol. 22(2), pages 895-915, April.
    17. Aksen, Deniz & Aras, Necati & Karaarslan, Ayse Gönül, 2009. "Design and analysis of government subsidized collection systems for incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 119(2), pages 308-327, June.
    18. Wenyuan Wang & Daniel Y. Mo & Yue Wang & Mitchell M. Tseng, 2019. "Assessing the cost structure of component reuse in a product family for remanufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 575-587, February.
    19. Fleischmann, M., 2001. "Reverse Logistics Network Structures and Design," ERIM Report Series Research in Management ERS-2001-52-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Khatami, Maryam & Mahootchi, Masoud & Farahani, Reza Zanjirani, 2015. "Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:367-381:10.1007/s10479-012-1192-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.