IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v323y2023i1d10.1007_s10479-018-2776-4.html
   My bibliography  Save this article

Design of a multi echelon product recovery embeded reverse logistics network for multi products and multi periods

Author

Listed:
  • Yongbo Li

    (China University of Petroleum(east China))

  • Devika Kannan

    (University of Southern Denmark)

  • P. C. Jha

    (University of Delhi)

  • Kiran Garg

    (University of Delhi)

  • Jyoti Darbari

    (University of Delhi)

  • Neha Agarwal

    (University of Delhi)

Abstract

Product recovery, accompanied by cradle to cradle policies from the contemporary supply chain, becomes an essential element in meeting environmental compliance and waste management policies. Incorporation of reverse logistics into the traditional supply chains becomes a complementary factor for efficient product recovery. To begin with product recovery, consumers are encouraged to return their end-of-use/end-of-life products, and the steps of collecting and planning the movement of returned products are crucial decisions. The efficient planning of a cost effective recovery process in reverse logistics requires dealing with the uncertainty underlying in the quantity and quality of the returned products. In this paper, we propose establishing an initial collection point within a permissible radius of the customer zones to overcome some of the issues of uncertainty. The uncertainty in the quantity and quality of the returned products are modelled using fuzzy triangular numbers. To capture the real world conditions of the proposed problem, our model aims at maximizing the profit incurred in the recovery process in an uncertain environment. The model was solved with the help of fuzzy mathematical programming. The model is validated by a company case belonging to the manufacturing of electronic products. To increase the applicability of the product recovery process in the industry, we propose a recovery process for the planning horizon consisting of multi periods and multi products. The outcomes of the proposed model indicate that for the successful realisation of such network, customers need to be legally enforced to return their end of used products in the channels established for value recovery.

Suggested Citation

  • Yongbo Li & Devika Kannan & P. C. Jha & Kiran Garg & Jyoti Darbari & Neha Agarwal, 2023. "Design of a multi echelon product recovery embeded reverse logistics network for multi products and multi periods," Annals of Operations Research, Springer, vol. 323(1), pages 131-152, April.
  • Handle: RePEc:spr:annopr:v:323:y:2023:i:1:d:10.1007_s10479-018-2776-4
    DOI: 10.1007/s10479-018-2776-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2776-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2776-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Listes, Ovidiu & Dekker, Rommert, 2005. "A stochastic approach to a case study for product recovery network design," European Journal of Operational Research, Elsevier, vol. 160(1), pages 268-287, January.
    2. Govindan, Kannan, 2018. "Sustainable consumption and production in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 195(C), pages 419-431.
    3. Mohammad Fattahi & Kannan Govindan, 2017. "Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products," Annals of Operations Research, Springer, vol. 253(1), pages 193-225, June.
    4. Vernika Agarwal & Kannan Govindan & Jyoti Dhingra Darbari & P. C. Jha, 2016. "An optimization model for sustainable solutions towards implementation of reverse logistics under collaborative framework," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 480-487, December.
    5. Tagaras, George & Zikopoulos, Christos, 2008. "Optimal location and value of timely sorting of used items in a remanufacturing supply chain with multiple collection sites," International Journal of Production Economics, Elsevier, vol. 115(2), pages 424-432, October.
    6. Niknejad, A. & Petrovic, D., 2014. "Optimisation of integrated reverse logistics networks with different product recovery routes," European Journal of Operational Research, Elsevier, vol. 238(1), pages 143-154.
    7. Guo, Shanshan & Aydin, Goker & Souza, Gilvan C., 2014. "Dismantle or remanufacture?," European Journal of Operational Research, Elsevier, vol. 233(3), pages 580-583.
    8. Mehrdad Mehrbod & Nan Tu & Lixin Miao & Dai Wenjing, 2012. "Interactive fuzzy goal programming for a multi-objective closed-loop logistics network," Annals of Operations Research, Springer, vol. 201(1), pages 367-381, December.
    9. Dubois, Didier & Fargier, Helene & Fortemps, Philippe, 2003. "Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge," European Journal of Operational Research, Elsevier, vol. 147(2), pages 231-252, June.
    10. de Figueiredo, João Neiva & Mayerle, Sérgio Fernando, 2008. "Designing minimum-cost recycling collection networks with required throughput," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 731-752, September.
    11. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2007. "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1063-1077, June.
    12. Govindan, Kannan & Fattahi, Mohammad, 2017. "Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 680-699.
    13. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    14. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    15. Krikke, Harold & le Blanc, Ieke & van Krieken, Maaike & Fleuren, Hein, 2008. "Low-frequency collection of materials disassembled from end-of-life vehicles: On the value of on-line monitoring in optimizing route planning," International Journal of Production Economics, Elsevier, vol. 111(2), pages 209-228, February.
    16. Schultmann, Frank & Zumkeller, Moritz & Rentz, Otto, 2006. "Modeling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1033-1050, June.
    17. Timo Hilger & Florian Sahling & Horst Tempelmeier, 2016. "Capacitated dynamic production and remanufacturing planning under demand and return uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 849-876, October.
    18. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2010. "Simultaneous design and planning of supply chains with reverse flows: A generic modelling framework," European Journal of Operational Research, Elsevier, vol. 203(2), pages 336-349, June.
    19. Cruz-Rivera, Reynaldo & Ertel, Jürgen, 2009. "Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico," European Journal of Operational Research, Elsevier, vol. 196(3), pages 930-939, August.
    20. Aras, Necati & Aksen, Deniz, 2008. "Locating collection centers for distance- and incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 111(2), pages 316-333, February.
    21. Chouinard, Marc & D'Amours, Sophie & Aït-Kadi, Daoud, 2008. "A stochastic programming approach for designing supply loops," International Journal of Production Economics, Elsevier, vol. 113(2), pages 657-677, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Kanchan & Chowdhury, Abdul H., 2012. "Designing a reverse logistics network for optimal collection, recovery and quality-based product-mix planning," International Journal of Production Economics, Elsevier, vol. 135(1), pages 209-221.
    2. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    3. Xuehong Gao, 2019. "A Novel Reverse Logistics Network Design Considering Multi-Level Investments for Facility Reconstruction with Environmental Considerations," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    4. Baptista, Susana & Barbosa-Póvoa, Ana Paula & Escudero, Laureano F. & Gomes, Maria Isabel & Pizarro, Celeste, 2019. "On risk management of a two-stage stochastic mixed 0–1 model for the closed-loop supply chain design problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 91-107.
    5. Anil Jindal & Kuldip Singh Sangwan, 2017. "Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors," Annals of Operations Research, Springer, vol. 257(1), pages 95-120, October.
    6. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    7. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    8. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.
    9. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    10. Hamed Soleimani & Prem Chhetri & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-Hashem & Shahrooz Shahparvari, 2022. "Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics," Annals of Operations Research, Springer, vol. 318(1), pages 531-556, November.
    11. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    12. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    13. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    14. Qin, Zhongfeng & Ji, Xiaoyu, 2010. "Logistics network design for product recovery in fuzzy environment," European Journal of Operational Research, Elsevier, vol. 202(2), pages 479-490, April.
    15. Gołębiewski, Bronisław & Trajer, Jędrzej & Jaros, Małgorzata & Winiczenko, Radosław, 2013. "Modelling of the location of vehicle recycling facilities: A case study in Poland," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 10-20.
    16. Mota, Bruna & Gomes, Maria Isabel & Carvalho, Ana & Barbosa-Povoa, Ana Paula, 2018. "Sustainable supply chains: An integrated modeling approach under uncertainty," Omega, Elsevier, vol. 77(C), pages 32-57.
    17. Peng Li & Di Wu, 2021. "A Multi-Echelon Network Design in a Dual-Channel Reverse Supply Chain Considering Consumer Preference," IJERPH, MDPI, vol. 18(9), pages 1-24, April.
    18. Kilic, Huseyin Selcuk & Cebeci, Ufuk & Ayhan, Mustafa Batuhan, 2015. "Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 120-132.
    19. Kumar, Akhilesh & Chinnam, Ratna Babu & Murat, Alper, 2017. "Hazard rate models for core return modeling in auto parts remanufacturing," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 354-361.
    20. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:323:y:2023:i:1:d:10.1007_s10479-018-2776-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.