IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v97y2013i4p403-433.html
   My bibliography  Save this article

Bandwidth selection for kernel density estimation: a review of fully automatic selectors

Author

Listed:
  • Nils-Bastian Heidenreich
  • Anja Schindler
  • Stefan Sperlich

Abstract

On the one hand, kernel density estimation has become a common tool for empirical studies in any research area. This goes hand in hand with the fact that this kind of estimator is now provided by many software packages. On the other hand, since about three decades the discussion on bandwidth selection has been going on. Although a good part of the discussion is about nonparametric regression, this parameter choice is by no means less problematic for density estimation. This becomes obvious when reading empirical studies in which practitioners have made use of kernel densities. New contributions typically provide simulations only to show that the own selector outperforms some of the existing methods. We review existing methods and compare them on a set of designs that exhibit few bumps and exponentially falling tails. We concentrate on small and moderate sample sizes because for large ones the differences between consistent methods are often negligible, at least for practitioners. As a byproduct we find that a mixture of simple plug-in and cross-validation methods produces bandwidths with a quite stable performance. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
  • Handle: RePEc:spr:alstar:v:97:y:2013:i:4:p:403-433
    DOI: 10.1007/s10182-013-0216-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-013-0216-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10182-013-0216-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, W. C. & Park, B. U. & Marron, J. S., 1994. "Asymptotically best bandwidth selectors in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 19(2), pages 119-127, January.
    2. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch & Sperlich, Stefan, 2011. "Do-Validation for Kernel Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 651-660.
    3. Savchuk, Olga Y. & Hart, Jeffrey D. & Sheather, Simon J., 2010. "Indirect Cross-Validation for Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 415-423.
    4. Hannig, J. & Marron, J.S., 2006. "Advanced Distribution Theory for SiZer," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 484-499, June.
    5. Marron, J. S. & Nolan, D., 1988. "Canonical kernels for density estimation," Statistics & Probability Letters, Elsevier, vol. 7(3), pages 195-199, December.
    6. PARK, Byeong U. & TURLACH, Berwin A., 1992. "Practical performance of several data driven bandwidth selectors," LIDAM Reprints CORE 1001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Park, B. & Turlach, B., 1992. "Practical Performance of Several Data Driven Bandwidih Selectors," Papers 9203, Catholique de Louvain - Institut de statistique.
    8. Feluch, W. & Koronacki, J., 1992. "A note on modified cross-validation in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 13(2), pages 143-151, March.
    9. PARK, Byeong & TURLACH, Berwin, 1992. "Practical performance of several data driven bandwidth selectors," LIDAM Discussion Papers CORE 1992005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Marron, James Stephen, 1986. "Convergence properties of an empirical error criterion for multivariate density estimation," Journal of Multivariate Analysis, Elsevier, vol. 19(1), pages 1-13, June.
    11. Cao, R., 1993. "Bootstrapping the Mean Integrated Squared Error," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 137-160, April.
    12. Duc Devroye & J. Beirlant & R. Cao & R. Fraiman & P. Hall & M. Jones & Gábor Lugosi & E. Mammen & J. Marron & C. Sánchez-Sellero & J. Uña & F. Udina & L. Devroye, 1997. "Universal smoothing factor selection in density estimation: theory and practice," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 223-320, December.
    13. Wolfgang Härdle & Philippe Vieu, 1992. "Kernel Regression Smoothing Of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(3), pages 209-232, May.
    14. Marron, J S, 1988. "Automatic Smoothing Parameter Selection: A Survey," Empirical Economics, Springer, vol. 13(3/4), pages 187-208.
    15. Hall, Peter & Marron, J. S., 1987. "Estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 109-115, November.
    16. Jones, M. C. & Sheather, S. J., 1991. "Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 11(6), pages 511-514, June.
    17. Cao, Ricardo & Cuevas, Antonio & Gonzalez Manteiga, Wensceslao, 1994. "A comparative study of several smoothing methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 153-176, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duc Devroye & J. Beirlant & R. Cao & R. Fraiman & P. Hall & M. Jones & Gábor Lugosi & E. Mammen & J. Marron & C. Sánchez-Sellero & J. Uña & F. Udina & L. Devroye, 1997. "Universal smoothing factor selection in density estimation: theory and practice," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 223-320, December.
    2. Farmen, Mark & Marron, J. S., 1999. "An assessment of finite sample performance of adaptive methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 143-168, April.
    3. Berwin A. TURLACH, "undated". "Bandwidth selection in kernel density estimation: a rewiew," Statistic und Oekonometrie 9307, Humboldt Universitaet Berlin.
    4. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    5. Karim M Abadir & Michel Lubrano, 2024. "Explicit solutions for the asymptotically optimal bandwidth in cross-validation," Post-Print hal-04678541, HAL.
    6. Jos'e E. Figueroa-L'opez & Cheng Li, 2016. "Optimal Kernel Estimation of Spot Volatility of Stochastic Differential Equations," Papers 1612.04507, arXiv.org.
    7. Wen-Ching Wang, 2018. "Setting up evaluate indicators for slope control engineering based on spatial clustering analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 921-939, September.
    8. J. S. Marron & S. S. Chung, 2001. "Presentation of smoothers: the family approach," Computational Statistics, Springer, vol. 16(1), pages 195-207, March.
    9. Tortosa-Ausina, Emili, 2002. "Exploring efficiency differences over time in the Spanish banking industry," European Journal of Operational Research, Elsevier, vol. 139(3), pages 643-664, June.
    10. Miguel Reyes & Mario Francisco-Fernández & Ricardo Cao, 2017. "Bandwidth selection in kernel density estimation for interval-grouped data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 527-545, September.
    11. Barbeito, Inés & Cao, Ricardo, 2016. "Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 130-147.
    12. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    13. M. M. Salinas-Jimenez, 2003. "Technological change, efficiency gains and capital accumulation in labour productivity growth and convergence: an application to the Spanish regions," Applied Economics, Taylor & Francis Journals, vol. 35(17), pages 1839-1851.
    14. Robert J. R. Elliott & Liza Jabbour & Liyun Zhang, 2016. "Firm productivity and importing: Evidence from Chinese manufacturing firms," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 49(3), pages 1086-1124, August.
    15. T. Sclocco & M. Marzio, 2001. "A note on kernel density estimation for non-negative random variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 10(1), pages 67-79, January.
    16. Seok-Oh Jeong & Byeong Park & Léopold Simar, 2010. "Nonparametric conditional efficiency measures: asymptotic properties," Annals of Operations Research, Springer, vol. 173(1), pages 105-122, January.
    17. Emili Tortosa-Ausina, 2000. "Inefficient banks or inefficient assets," Working Papers 0005, Departament Empresa, Universitat Autònoma de Barcelona, revised Dec 2000.
    18. Gonzalez-Manteiga, W. & Sanchez-Sellero, C. & Wand, M. P., 1996. "Accuracy of binned kernel functional approximations," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 1-16, June.
    19. repec:zbw:bofitp:2007_021 is not listed on IDEAS
    20. Emili Tortosa-Ausina, 2003. "Bank cost efficiency as distribution dynamics: controlling for specialization is important," Investigaciones Economicas, Fundación SEPI, vol. 27(1), pages 71-96, January.
    21. Declan Curran & Michael Funke & Jue Wang, 2007. "Economic Growth across Space and Time: subprovincial Evidence from Mainland China," Quantitative Macroeconomics Working Papers 20710, Hamburg University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:97:y:2013:i:4:p:403-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.