IDEAS home Printed from https://ideas.repec.org/r/spr/alstar/v97y2013i4p403-433.html
   My bibliography  Save this item

Bandwidth selection for kernel density estimation: a review of fully automatic selectors

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Max Köhler & Anja Schindler & Stefan Sperlich, 2014. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
  2. M. Hiabu & E. Mammen & M. D. Martìnez-Miranda & J. P. Nielsen, 2016. "In-sample forecasting with local linear survival densities," Biometrika, Biometrika Trust, vol. 103(4), pages 843-859.
  3. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
  4. D.P. Amali Dassanayake & Igor Volobouev & A. Alexandre Trindade, 2017. "Local orthogonal polynomial expansion for density estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 806-830, October.
  5. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  6. Tingting Cheng & Jiti Gao & Xibin Zhang, 2019. "Nonparametric localized bandwidth selection for Kernel density estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 733-762, August.
  7. Stefan Sperlich, 2022. "Comments on: hybrid semiparametric Bayesian networks," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 335-339, June.
  8. Joseph Ngatchou-Wandji & Marwa Ltaifa & Didier Alain Njamen Njomen & Jia Shen, 2022. "Nonparametric Estimation of the Density Function of the Distribution of the Noise in CHARN Models," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
  9. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
  10. Escot, Lorenzo & Sandubete, Julio E., 2023. "Estimating Lyapunov exponents on a noisy environment by global and local Jacobian indirect algorithms," Applied Mathematics and Computation, Elsevier, vol. 436(C).
  11. Chengliang Liu & Tao Wang & Qingbin Guo, 2018. "Factors Aggregating Ability and the Regional Differences among China’s Urban Agglomerations," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
  12. El Heda, Khadijetou & Louani, Djamal, 2018. "Optimal bandwidth selection in kernel density estimation for continuous time dependent processes," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 9-19.
  13. Scholz, Michael & Nielsen, Jens Perch & Sperlich, Stefan, 2015. "Nonparametric prediction of stock returns based on yearly data: The long-term view," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 143-155.
  14. Fang Chen & Huicong Jia & Enyu Du & Lei Wang & Ning Wang & Aqiang Yang, 2021. "Spatiotemporal Variations and Risk Analysis of Chinese Typhoon Disasters," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
  15. Michael Govorov & Giedrė Beconytė & Gennady Gienko, 2023. "Trivariate Kernel Density Estimation of Spatiotemporal Crime Events with Case Study for Lithuania," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
  16. Qidi Dong & Jun Cai & Linjia Wu & Di Li & Qibing Chen, 2022. "Quantitative Identification of Rural Functions Based on Big Data: A Case Study of Dujiangyan Irrigation District in Chengdu," Land, MDPI, vol. 11(3), pages 1-17, March.
  17. Inés Barbeito & Ricardo Cao & Stefan Sperlich, 2023. "Bandwidth selection for statistical matching and prediction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 418-446, March.
  18. Gaoyuan Wang & Yixuan Wang & Yangli Li & Tian Chen, 2023. "Identification of Urban Clusters Based on Multisource Data—An Example of Three Major Urban Agglomerations in China," Land, MDPI, vol. 12(5), pages 1-25, May.
  19. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection in Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 14/14, Monash University, Department of Econometrics and Business Statistics.
  20. O’Brien, Travis A. & Kashinath, Karthik & Cavanaugh, Nicholas R. & Collins, William D. & O’Brien, John P., 2016. "A fast and objective multidimensional kernel density estimation method: fastKDE," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 148-160.
  21. Meng Yang & Xiaoxu Sun & Xiaoting Deng & Zhixiong Lu & Tao Wang, 2023. "Extrapolation of Tractor Traction Resistance Load Spectrum and Compilation of Loading Spectrum Based on Optimal Threshold Selection Using a Genetic Algorithm," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
  22. Yicheng Tang & Xinyan Zhu & Wei Guo & Xinyue Ye & Tao Hu & Yaxin Fan & Faming Zhang, 2017. "Non-Homogeneous Diffusion of Residential Crime in Urban China," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
  23. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.
  24. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
  25. Xueming Li & Yishan Song & He Liu & Xinyu Hou, 2023. "Extraction of Urban Built-Up Areas Using Nighttime Light (NTL) and Multi-Source Data: A Case Study in Dalian City, China," Land, MDPI, vol. 12(2), pages 1-18, February.
  26. Jun Jiang & Nicholas B Larson & Naresh Prodduturi & Thomas J Flotte & Steven N Hart, 2019. "Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-11, July.
  27. Changhui Hu & Weidong Liu & Yuqiu Jia & Yaya Jin, 2019. "Characterization of Territorial Spatial Agglomeration Based on POI Data: A Case Study of Ningbo City, China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
  28. Zening Xu & Xiaolu Gao & Zhiqiang Wang & Jie Fan, 2019. "Big Data-Based Evaluation of Urban Parks: A Chinese Case Study," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
  29. Sreevani, & Murthy, C.A., 2016. "On bandwidth selection using minimal spanning tree for kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 67-84.
  30. Yu Liu & Chen Zeng & Huatai Cui & Yanhua Song, 2018. "Sustainable Land Urbanization and Ecological Carrying Capacity: A Spatially Explicit Perspective," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
  31. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
  32. Xiang Li & Jiang Zhu & Tao Liu & Xiangdong Yin & Jiangchun Yao & Hao Jiang & Bing Bu & Jianlong Yan & Yixuan Li & Zhangcheng Chen, 2023. "Quota and Space Allocations of New Urban Land Supported by Urban Growth Simulations: A Case Study of Guangzhou City, China," Land, MDPI, vol. 12(6), pages 1-21, June.
  33. Peiyuan Zhang & Jiaming Li & Wenzhong Zhang, 2022. "Characteristics of High-Technology Industry Migration within Metropolitan Areas—A Case Study of Beijing Metropolitan Area," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.