IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v76y2024i2d10.1007_s10463-023-00890-6.html
   My bibliography  Save this article

Non-parametric adaptive bandwidth selection for kernel estimators of spatial intensity functions

Author

Listed:
  • M. N. M. Lieshout

    (CWI
    University of Twente)

Abstract

We introduce a new fully non-parametric two-step adaptive bandwidth selection method for kernel estimators of spatial point process intensity functions based on the Campbell–Mecke formula and Abramson’s square root law. We present a simulation study to assess its performance relative to other adaptive and global bandwidth selectors, investigate the influence of the pilot estimator and apply the technique to two data sets: A pattern of trees and an earthquake catalogue.

Suggested Citation

  • M. N. M. Lieshout, 2024. "Non-parametric adaptive bandwidth selection for kernel estimators of spatial intensity functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(2), pages 313-331, April.
  • Handle: RePEc:spr:aistmt:v:76:y:2024:i:2:d:10.1007_s10463-023-00890-6
    DOI: 10.1007/s10463-023-00890-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-023-00890-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-023-00890-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. D. Barr & F. P. Schoenberg, 2010. "On the Voronoi estimator for the intensity of an inhomogeneous planar Poisson process," Biometrika, Biometrika Trust, vol. 97(4), pages 977-984.
    2. O Cronie & M N M Van Lieshout, 2018. "A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions," Biometrika, Biometrika Trust, vol. 105(2), pages 455-462.
    3. Davies, Tilman M. & Flynn, Claire R. & Hazelton, Martin L., 2018. "On the utility of asymptotic bandwidth selectors for spatially adaptive kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 75-81.
    4. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    5. Brooks, Maria Mori & Marron, J. Stephen, 1991. "Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions," Stochastic Processes and their Applications, Elsevier, vol. 38(1), pages 157-165, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.
    2. M. N. M. Lieshout, 2024. "Discussion of ‘Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks’ by Matthias Eckardt and Mehdi Moradi," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 395-398, June.
    3. Matthias Eckardt & Mehdi Moradi, 2024. "Rejoinder on ‘Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks’," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 405-416, June.
    4. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. S Ward & H S Battey & E A K Cohen, 2023. "Nonparametric estimation of the intensity function of a spatial point process on a Riemannian manifold," Biometrika, Biometrika Trust, vol. 110(4), pages 1009-1021.
    6. Ya-Mei Chang & Ying-Chi Huang, 2024. "Estimating Species Abundance from Presence–Absence Maps by Kernel Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 812-830, December.
    7. Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
    8. Amaya-Gómez, Rafael & Sánchez-Silva, Mauricio & Muñoz, Felipe & Schoefs, Franck & Bastidas-Arteaga, Emilio, 2024. "Spatial characterization and simulation of new defects in corroded pipeline based on In-Line Inspections," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    10. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    11. Yingqi Zhao & Donglin Zeng & Amy H. Herring & Amy Ising & Anna Waller & David Richardson & Michael R. Kosorok, 2011. "Detecting Disease Outbreaks Using Local Spatiotemporal Methods," Biometrics, The International Biometric Society, vol. 67(4), pages 1508-1517, December.
    12. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    13. Peng Hou & Xiaojian Yi & Haiping Dong, 2020. "A Spatial Statistic Based Risk Assessment Approach to Prioritize the Pipeline Inspection of the Pipeline Network," Energies, MDPI, vol. 13(3), pages 1-16, February.
    14. Kristian Bjørn Hessellund & Ganggang Xu & Yongtao Guan & Rasmus Waagepetersen, 2022. "Second‐order semi‐parametric inference for multivariate log Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 244-268, January.
    15. Giacomo Bilotti & Michael Kempf & Eljas Oksanen & Lizzie Scholtus & Oliver Nakoinz, 2024. "Point Pattern Analysis (PPA) as a tool for reproducible archaeological site distribution analyses and location processes in early iron age south-west Germany," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-25, March.
    16. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    17. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    18. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    19. Wenyang Zhang & Qiwei Yao & Howell Tong & Nils Chr. Stenseth, 2003. "Smoothing for Spatiotemporal Models and Its Application to Modeling Muskrat-Mink Interaction," Biometrics, The International Biometric Society, vol. 59(4), pages 813-821, December.
    20. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:76:y:2024:i:2:d:10.1007_s10463-023-00890-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.