IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v55y2003i3p585-595.html
   My bibliography  Save this article

Empirical likelihood for partial linear models

Author

Listed:
  • Qi-Hua Wang
  • Bing-Yi Jing

Abstract

No abstract is available for this item.

Suggested Citation

  • Qi-Hua Wang & Bing-Yi Jing, 2003. "Empirical likelihood for partial linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 585-595, September.
  • Handle: RePEc:spr:aistmt:v:55:y:2003:i:3:p:585-595
    DOI: 10.1007/BF02517809
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02517809
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02517809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, Scott A. & Truong, Young K., 1997. "Local Linear Estimation in Partly Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 1-19, January.
    2. Song Chen, 1993. "On the accuracy of empirical likelihood confidence regions for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 621-637, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    3. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    4. Guo-Liang Fan & Han-Ying Liang & Zhen-Sheng Huang, 2012. "Empirical likelihood for partially time-varying coefficient models with dependent observations," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 71-84.
    5. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
    6. Lu, Xuewen, 2009. "Empirical likelihood for heteroscedastic partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 387-396, March.
    7. Guo-Liang Fan & Han-Ying Liang & Jiang-Feng Wang, 2013. "Empirical likelihood for heteroscedastic partially linear errors-in-variables model with α-mixing errors," Statistical Papers, Springer, vol. 54(1), pages 85-112, February.
    8. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    9. Jun Zhang & Nanguang Zhou & Zipeng Sun & Gaorong Li & Zhenghong Wei, 2016. "Statistical inference on restricted partial linear regression models with partial distortion measurement errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 304-331, November.
    10. Wanrong Liu & Xuewen Lu, 2011. "Empirical likelihood for density-weighted average derivatives," Statistical Papers, Springer, vol. 52(2), pages 391-412, May.
    11. Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Gengsheng & Jing, Bing-Yi, 2001. "Censored Partial Linear Models and Empirical Likelihood," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 37-61, July.
    2. Chen, Song Xi & Qin, Jing, 2003. "Empirical likelihood-based confidence intervals for data with possible zero observations," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 29-37, October.
    3. Francesco Bravo, "undated". "Empirical likelihood specification testing in linear regression models," Discussion Papers 00/28, Department of Economics, University of York.
    4. Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
    5. Qi-Hua Wang & Bing-Yi Jing, 2001. "Empirical Likelihood for a Class of Functionals of Survival Distribution with Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 517-527, September.
    6. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.
    7. Gemai Chen & Jinhong You, 2005. "An asymptotic theory for semiparametric generalized least squares estimation in partially linear regression models," Statistical Papers, Springer, vol. 46(2), pages 173-193, April.
    8. Xuejun Wang & Xin Deng & Shuhe Hu, 2018. "On consistency of the weighted least squares estimators in a semiparametric regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 797-820, October.
    9. Jing, Bing-Yi, 1995. "Two-sample empirical likelihood method," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 315-319, September.
    10. Bruce Brown & Song Chen, 1998. "Combined and Least Squares Empirical Likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 697-714, December.
    11. Zhao, Haibing & You, Jinhong, 2011. "Difference based estimation for partially linear regression models with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1321-1338, November.
    12. Zhou, Xian & You, Jinhong, 2004. "Wavelet estimation in varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 91-104, June.
    13. Kakizawa, Yoshihide, 2011. "Improved additive adjustments for the LR/ELR test statistics," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1245-1255, August.
    14. Lu, Minggen, 2010. "Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2528-2542, November.
    15. Alexandra Soberon & Irene D’Hers, 2020. "The Environmental Kuznets Curve: A Semiparametric Approach with Cross-Sectional Dependence," JRFM, MDPI, vol. 13(11), pages 1-23, November.
    16. Jing-Jing Zhang & Han-Ying Liang & Amei Amei, 2014. "Asymptotic normality of estimators in heteroscedastic errors-in-variables model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 165-195, April.
    17. Liu, Yukun & Zou, Changliang & Zhang, Runchu, 2008. "Empirical likelihood for the two-sample mean problem," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 548-556, April.
    18. Qin, Gengsheng & Tsao, Min, 2003. "Empirical likelihood inference for median regression models for censored survival data," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 416-430, May.
    19. Francesco Bravo, "undated". "Bartlett-type Adjustments for Empirical Discrepancy Test Statistics," Discussion Papers 04/14, Department of Economics, University of York.
    20. Qin, Gengsheng & Zhao, Yichuan, 2007. "Empirical likelihood inference for the mean residual life under random censorship," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 549-557, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:55:y:2003:i:3:p:585-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.