IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v6y2012i4p303-321.html
   My bibliography  Save this article

Sensory analysis in the food industry as a tool for marketing decisions

Author

Listed:
  • Maria Iannario

    ()

  • Marica Manisera

    ()

  • Domenico Piccolo

    ()

  • Paola Zuccolotto

    ()

Abstract

In the food industry, sensory analysis can be useful to direct marketing decisions concerning not only products, for example product positioning with respect to competitors, but also market segmentation, customer relationship management, advertising strategies and price policies. In this paper we show how interesting information useful for marketing management can be obtained by combining the results from cub models and algorithmic data mining techniques (specifically, variable importance measurements from Random Forest). A case study on sensory evaluation of different varieties of Italian espresso is presented. Copyright Springer-Verlag Berlin Heidelberg 2012

Suggested Citation

  • Maria Iannario & Marica Manisera & Domenico Piccolo & Paola Zuccolotto, 2012. "Sensory analysis in the food industry as a tool for marketing decisions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 303-321, December.
  • Handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:303-321
    DOI: 10.1007/s11634-012-0120-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-012-0120-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cicia, Gianni & Corduas, Marcella & Del Giudice, Teresa & Piccolo, Domenico, 2010. "Valuing Consumer Preferences with the CUB Model: A Case Study of Fair Trade Coffee," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 1(1).
    2. D'Elia, Angela & Piccolo, Domenico, 2005. "A mixture model for preferences data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 917-934, June.
    3. Maria Iannario, 2012. "Modelling shelter choices in a class of mixture models for ordinal responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manisera, Marica & Zuccolotto, Paola, 2015. "Identifiability of a model for discrete frequency distributions with a multidimensional parameter space," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 302-316.
    2. Corduas, Marcella, 2015. "A statistical model for consumer preferences: the case of Italian extra virgin olive oil," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202701, European Association of Agricultural Economists.
    3. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    4. Marica Manisera & Paola Zuccolotto, 2016. "Treatment of ‘don’t know’ responses in a mixture model for rating data," METRON, Springer;Sapienza Università di Roma, vol. 74(1), pages 99-115, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:303-321. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.