IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Sensory analysis in the food industry as a tool for marketing decisions

  • Maria Iannario

    ()

  • Marica Manisera

    ()

  • Domenico Piccolo

    ()

  • Paola Zuccolotto

    ()

In the food industry, sensory analysis can be useful to direct marketing decisions concerning not only products, for example product positioning with respect to competitors, but also market segmentation, customer relationship management, advertising strategies and price policies. In this paper we show how interesting information useful for marketing management can be obtained by combining the results from cub models and algorithmic data mining techniques (specifically, variable importance measurements from Random Forest). A case study on sensory evaluation of different varieties of Italian espresso is presented. Copyright Springer-Verlag Berlin Heidelberg 2012

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s11634-012-0120-4
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Advances in Data Analysis and Classification.

Volume (Year): 6 (2012)
Issue (Month): 4 (December)
Pages: 303-321

as
in new window

Handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:303-321
Contact details of provider: Web page: http://www.springer.com/statistics/statistical+theory+and+methods/journal/11634

Order Information: Web: http://link.springer.de/orders.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. D'Elia, Angela & Piccolo, Domenico, 2005. "A mixture model for preferences data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 917-934, June.
  2. Cicia, Gianni & Corduas, Marcella & Del Giudice, Teresa & Piccolo, Domenico, 2010. "Valuing Consumer Preferences with the CUB Model: A Case Study of Fair Trade Coffee," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 1(1).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:303-321. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.