IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v140y2015icp302-316.html
   My bibliography  Save this article

Identifiability of a model for discrete frequency distributions with a multidimensional parameter space

Author

Listed:
  • Manisera, Marica
  • Zuccolotto, Paola

Abstract

This paper is concerned with the identifiability of models depending on a multidimensional parameter vector, aimed at fitting a probability distribution to discrete observed data, with a special focus on a recently proposed mixture model. Starting from the necessary and sufficient condition derived by the definition of identifiability, we describe a general method to verify whether a specific model is identifiable or not. This procedure is then applied to investigate the identifiability of a recently proposed mixture model for rating data, Nonlinear CUB, which is an extension of a class of mixture models called CUB (Combination of Uniform and Binomial). Formal proofs and a numerical study show that some sufficient conditions for identifiability of Nonlinear CUB are always satisfied, provided that in the estimation procedure one quantity is fixed at a relatively small value.

Suggested Citation

  • Manisera, Marica & Zuccolotto, Paola, 2015. "Identifiability of a model for discrete frequency distributions with a multidimensional parameter space," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 302-316.
  • Handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:302-316
    DOI: 10.1016/j.jmva.2015.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15001268
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    2. Maria Iannario & Marica Manisera & Domenico Piccolo & Paola Zuccolotto, 2012. "Sensory analysis in the food industry as a tool for marketing decisions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 303-321, December.
    3. Maria Iannario, 2010. "On the identifiability of a mixture model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 87-94.
    4. Romina Gambacorta & Maria Iannario, 2013. "Measuring Job Satisfaction with CUB Models," LABOUR, CEIS, vol. 27(2), pages 198-224, June.
    5. N. Atienza & J. Garcia-Heras & J. Muñoz-Pichardo, 2006. "A new condition for identifiability of finite mixture distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(2), pages 215-221, April.
    6. D'Elia, Angela & Piccolo, Domenico, 2005. "A mixture model for preferences data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 917-934, June.
    7. Maria Iannario, 2012. "Modelling shelter choices in a class of mixture models for ordinal responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:302-316. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.