IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v49y2005i3p917-934.html
   My bibliography  Save this article

A mixture model for preferences data analysis

Author

Listed:
  • D'Elia, Angela
  • Piccolo, Domenico

Abstract

No abstract is available for this item.

Suggested Citation

  • D'Elia, Angela & Piccolo, Domenico, 2005. "A mixture model for preferences data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 917-934, June.
  • Handle: RePEc:eee:csdana:v:49:y:2005:i:3:p:917-934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(04)00198-7
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    2. Philip Yu, 2000. "Bayesian analysis of order-statistics models for ranking data," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 281-299, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manisera, Marica & Zuccolotto, Paola, 2015. "Identifiability of a model for discrete frequency distributions with a multidimensional parameter space," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 302-316.
    2. repec:spr:qualqt:v:51:y:2017:i:4:d:10.1007_s11135-016-0349-7 is not listed on IDEAS
    3. Leonardo Grilli & Maria Iannario & Domenico Piccolo & Carla Rampichini, 2014. "Latent class CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 105-119, March.
    4. Maria Iannario & Domenico Piccolo, 2016. "A generalized framework for modelling ordinal data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(2), pages 163-189, June.
    5. Maria Iannario, 2012. "Preliminary estimators for a mixture model of ordinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 163-184, October.
    6. repec:spr:qualqt:v:51:y:2017:i:5:d:10.1007_s11135-016-0393-3 is not listed on IDEAS
    7. Donata Marasini & Piero Quatto & Enrico Ripamonti, 2016. "Intuitionistic fuzzy sets in questionnaire analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 767-790, March.
    8. Maria Iannario, 2010. "On the identifiability of a mixture model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 87-94.
    9. repec:eee:csdana:v:123:y:2018:i:c:p:101-115 is not listed on IDEAS
    10. Cicia, Gianni & Corduas, Marcella & Del Giudice, Teresa & Piccolo, Domenico, 2010. "Valuing Consumer Preferences with the CUB Model: A Case Study of Fair Trade Coffee," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 1(1).
    11. repec:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-016-0247-9 is not listed on IDEAS
    12. Romina Gambacorta & Maria Iannario, 2012. "Statistical models for measuring job satisfaction," Temi di discussione (Economic working papers) 852, Bank of Italy, Economic Research and International Relations Area.
    13. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    14. Marica Manisera & Paola Zuccolotto, 2016. "Treatment of ‘don’t know’ responses in a mixture model for rating data," METRON, Springer;Sapienza Università di Roma, vol. 74(1), pages 99-115, April.
    15. Maria Iannario & Anna Clara Monti & Domenico Piccolo, 2016. "Robustness issues for cub models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 731-750, December.
    16. Maria Iannario & Marica Manisera & Domenico Piccolo & Paola Zuccolotto, 2012. "Sensory analysis in the food industry as a tool for marketing decisions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 303-321, December.
    17. Maria Iannario & Marica Manisera & Paola Zuccolotto, 2017. "Treatment of “don’t know” responses in the consumers’ perceptions about sustainability in the agri-food sector," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 765-778, March.
    18. Stefania Capecchi & Maria Iannario, 2016. "Gini heterogeneity index for detecting uncertainty in ordinal data surveys," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 223-232, August.
    19. Maria Iannario, 2012. "Modelling shelter choices in a class of mixture models for ordinal responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 1-22, March.
    20. Stefania Capecchi & Maria Iannario & Domenico Piccolo, 2012. "Modelling Job Satisfaction in AlmaLaurea Surveys," Working Papers 56, AlmaLaurea Inter-University Consortium.
    21. Arboretti Giancristofaro, Rosa & Bordignon, Paolo, 2015. "Consumer preferences in food packaging: cub models and conjoint analysis," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202707, European Association of Agricultural Economists.
    22. repec:spr:soinre:v:135:y:2018:i:2:d:10.1007_s11205-016-1519-7 is not listed on IDEAS
    23. Maria Iannario & Domenico Piccolo, 2016. "A comprehensive framework of regression models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 233-252, August.
    24. Donata Marasini & Piero Quatto & Enrico Ripamonti, 2016. "Intuitionistic fuzzy sets in questionnaire analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 767-790, March.
    25. Iannario, Maria & Piccolo, Domenico, 2014. "A theorem on CUB models for rank data," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 27-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:49:y:2005:i:3:p:917-934. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.