IDEAS home Printed from https://ideas.repec.org/a/sot/journl/y2013i54p9.html
   My bibliography  Save this article

Towards E(lectric)- urban freight: first promising steps in the electric vehicle revolution

Author

Listed:
  • J.H.R. van Duin
  • L.A. Tavasszy
  • H.J. Quak

Abstract

Innovative logistics service providers are currently looking for possibilities to introduce electric vehicles for goods distribution. As electrical vehicles still suffer from a limited operation range, the logistical process faces important challenges. In this research we advise on the composition of the electrical vehicle fleet and on the configuration of the service network, to achieve a successful implementation of electric vehicl es in the innercity of Amsterdam. A d ditional question in our research is whether the CO2 emission reduces at all or might even increase due to an increase of tripkilometres as a consequence of mileage constraint s by the bat teries . The aim of the implementation of the research is to determine the ideal fleet to transport a known demand of cargo, located at a central depot , to a known set of recipients using vehicles of varying types. The problem can be classified as a Fleet S ize and Mix Vehicle Routing Problem (FSMVRP). In addition to the regular constraints that apply to the regular FSMVRP, in our case also time windows apply to the cargo that needs to be transported (FSMVRPTW). The operation range of the vehicles is constrai ned by the battery capacity. We suggest modifications to existing formulations of the FSMVRPTW to make it suitable for the application on cases with electrical vehicles. We apply the model to create an optimal fleet configuration and the service routes. I n our research case of the Cargohopper in Amsterdam, the performance of alternative fleet compositions is determined for a variety of scenarios, to assess their robustness. The main uncertainties addressed in the scenarios are the cargo composition, the op eration range of the vehicles and their operation speed. Based on our research findings in Amsterdam we conclude that the current generation of electric vehicles as a part of urban cons olidation concept have the ability to perform urban freight transport efficiently (19% reduction in vehicle kilomet res ) and meanwhile have the capability to improve air quality and reduce CO 2 - emissions by 90% , and reduce noise nuisance in the in ner cities of our (future) towns.

Suggested Citation

  • J.H.R. van Duin & L.A. Tavasszy & H.J. Quak, 2013. "Towards E(lectric)- urban freight: first promising steps in the electric vehicle revolution," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-9.
  • Handle: RePEc:sot:journl:y:2013:i:54:p:9
    as

    Download full text from publisher

    File URL: https://www.openstarts.units.it/dspace/handle/10077/8875
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salhi, Said & Rand, Graham K., 1993. "Incorporating vehicle routing into the vehicle fleet composition problem," European Journal of Operational Research, Elsevier, vol. 66(3), pages 313-330, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    3. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    4. Stanisław Iwan & Mariusz Nürnberg & Artur Bejger & Kinga Kijewska & Krzysztof Małecki, 2021. "Unloading Bays as Charging Stations for EFV-Based Urban Freight Delivery System—Example of Szczecin," Energies, MDPI, vol. 14(18), pages 1-22, September.
    5. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    6. Jose L. Arroyo & Ángel Felipe & M. Teresa Ortuño & Gregorio Tirado, 2020. "Effectiveness of carbon pricing policies for promoting urban freight electrification: analysis of last mile delivery in Madrid," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1417-1440, December.
    7. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    8. Lemardelé, Clément & Estrada, Miquel & Pagès, Laia & Bachofner, Mónika, 2021. "Potentialities of drones and ground autonomous delivery devices for last-mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    10. Liu, Dan & Kaisar, Evangelos I. & Yang, Yang & Yan, Pengyu, 2022. "Physical Internet-enabled E-grocery delivery Network:A load-dependent two-echelon vehicle routing problem with mixed vehicles," International Journal of Production Economics, Elsevier, vol. 254(C).
    11. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    12. Ajanovic, Amela & Haas, Reinhard, 2016. "Dissemination of electric vehicles in urban areas: Major factors for success," Energy, Elsevier, vol. 115(P2), pages 1451-1458.
    13. Leise Kelli de Oliveira & Carla de Oliveira Leite Nascimento & Paulo Renato de Sousa & Paulo Tarso Vilela de Resende & Francisco Gildemir Ferreira da Silva, 2019. "Transport Service Provider Perception of Barriers and Urban Freight Policies in Brazil," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    14. Jarosław Wątróbski & Krzysztof Małecki & Kinga Kijewska & Stanisław Iwan & Artur Karczmarczyk & Russell G. Thompson, 2017. "Multi-Criteria Analysis of Electric Vans for City Logistics," Sustainability, MDPI, vol. 9(8), pages 1-34, August.
    15. Jakov Topić & Branimir Škugor & Joško Deur, 2022. "Receding-Horizon Prediction of Vehicle Velocity Profile Using Deterministic and Stochastic Deep Neural Network Models," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    16. Daniel Newman & Peter Wells & Ceri Donovan & Paul Nieuwenhuis & Huw Davies, 2014. "Urban, sub-urban or rural: where is the best place for electric vehicles?," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 306-323.
    17. Luigi Ranieri & Salvatore Digiesi & Bartolomeo Silvestri & Michele Roccotelli, 2018. "A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    18. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hart, Robert A & Roberts, J Elizabeth, 2013. "The rise and fall of piecework-timework wage differentials: market volatility, labor heterogeneity, and output pricing," Stirling Economics Discussion Papers 2013-12, University of Stirling, Division of Economics.
    2. Panagiotis Ypsilantis & Rob Zuidwijk, 2019. "Collaborative Fleet Deployment and Routing for Sustainable Transport," Sustainability, MDPI, vol. 11(20), pages 1-26, October.
    3. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    4. Jabali, Ola & Gendreau, Michel & Laporte, Gilbert, 2012. "A continuous approximation model for the fleet composition problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1591-1606.
    5. Renaud, Jacques & Boctor, Fayez F., 2002. "A sweep-based algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 140(3), pages 618-628, August.
    6. Czajkowski, Mikolaj & Hanley, Nicholas & LaRiviere, Jacob, 2013. "The Effects of Experience on Preference Uncertainty: Theory and Empirics for Public and Quasi-Public Environmental Goods," Stirling Economics Discussion Papers 2013-11, University of Stirling, Division of Economics.
    7. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    8. Belfiore, PatrI´cia & Yoshida Yoshizaki, Hugo Tsugunobu, 2009. "Scatter search for a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries in Brazil," European Journal of Operational Research, Elsevier, vol. 199(3), pages 750-758, December.
    9. Mehdi Nourinejad & Matthew J. Roorda, 2017. "A continuous approximation model for the fleet composition problem on the rectangular grid," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 373-401, March.
    10. Mohamed Amjath & Laoucine Kerbache & James MacGregor Smith, 2024. "A Closed Queueing Networks Approach for an Optimal Heterogeneous Fleet Size of an Inter-Facility Bulk Material Transfer System," Logistics, MDPI, vol. 8(1), pages 1-38, March.
    11. Salhi, S. & Sari, M., 1997. "A multi-level composite heuristic for the multi-depot vehicle fleet mix problem," European Journal of Operational Research, Elsevier, vol. 103(1), pages 95-112, November.
    12. N A Wassan, 2006. "A reactive tabu search for the vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 111-116, January.
    13. Liu, Shuguang, 2013. "A hybrid population heuristic for the heterogeneous vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 67-78.
    14. C D Tarantilis & C T Kiranoudis & V S Vassiliadis, 2003. "A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 65-71, January.
    15. Brandão, José, 2009. "A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 716-728, June.
    16. Olli Bräysy & Wout Dullaert & Geir Hasle & David Mester & Michel Gendreau, 2008. "An Effective Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 371-386, August.
    17. Imran, Arif & Salhi, Said & Wassan, Niaz A., 2009. "A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 509-518, September.
    18. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    19. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    20. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sot:journl:y:2013:i:54:p:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Romeo Danielis (email available below). General contact details of provider: https://edirc.repec.org/data/xxxxxxx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.