IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5677-d632294.html
   My bibliography  Save this article

Unloading Bays as Charging Stations for EFV-Based Urban Freight Delivery System—Example of Szczecin

Author

Listed:
  • Stanisław Iwan

    (Faculty of Engineering and Economics of Transport, Maritime University of Szczecin, 70-507 Szczecin, Poland)

  • Mariusz Nürnberg

    (Faculty of Engineering and Economics of Transport, Maritime University of Szczecin, 70-507 Szczecin, Poland)

  • Artur Bejger

    (Faculty of Marine Engineering, Maritime University of Szczecin, 71-650 Szczecin, Poland)

  • Kinga Kijewska

    (Faculty of Engineering and Economics of Transport, Maritime University of Szczecin, 70-507 Szczecin, Poland)

  • Krzysztof Małecki

    (Faculty of Computer Science, West Pomeranian University of Technology, 71-210 Szczecin, Poland)

Abstract

The problem of urban logistics operations in the context of their impact on the environment has become the key challenge. Due to that, there has been a growing interest in increasing the use of alternative fuels, including electro-mobility. However, an important barrier to the utilisation of electric freight vehicles (EFVs) is their travel range and battery capacity. The paper is focused on the idea of EFV utilisation improvement by implementation of charging stations in unloading bays. First, the Authors analysed the efficiency of chosen vehicles during daily work. Next, the potential improvement of their travel range was analysed, considering the short-time charging processes carried out during delivery operations, using the charging systems provided in unloading bays. Moreover, the concept of wireless chargers utilisation was proposed as a challenge for future work. According to the analysis, utilisation of unloading bays equipped with short-time battery chargers could improve significantly the travel range of EFVs. As a result, it could improve the efficiency of electric vehicles in last mile deliveries in city areas.

Suggested Citation

  • Stanisław Iwan & Mariusz Nürnberg & Artur Bejger & Kinga Kijewska & Krzysztof Małecki, 2021. "Unloading Bays as Charging Stations for EFV-Based Urban Freight Delivery System—Example of Szczecin," Energies, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5677-:d:632294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A hybrid recourse policy for the vehicle routing problem with stochastic demands," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 269-298, September.
    2. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    3. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    4. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    5. Jarosław Wątróbski & Krzysztof Małecki & Kinga Kijewska & Stanisław Iwan & Artur Karczmarczyk & Russell G. Thompson, 2017. "Multi-Criteria Analysis of Electric Vans for City Logistics," Sustainability, MDPI, vol. 9(8), pages 1-34, August.
    6. Piloto-Rodríguez, Ramón & Sánchez-Borroto, Yisel & Melo-Espinosa, Eliezer Ahmed & Verhelst, Sebastian, 2017. "Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 833-842.
    7. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    8. Zulfiqar Ali Lashari & Joonho Ko & Junseok Jang, 2021. "Consumers’ Intention to Purchase Electric Vehicles: Influences of User Attitude and Perception," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    9. Basso, Rafael & Kulcsár, Balázs & Sanchez-Diaz, Ivan, 2021. "Electric vehicle routing problem with machine learning for energy prediction," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 24-55.
    10. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    11. J.H.R. van Duin & L.A. Tavasszy & H.J. Quak, 2013. "Towards E(lectric)- urban freight: first promising steps in the electric vehicle revolution," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-9.
    12. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.
    13. Lebeau, Philippe & Macharis, Cathy & Van Mierlo, Joeri, 2016. "Exploring the choice of battery electric vehicles in city logistics: A conjoint-based choice analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 245-258.
    14. Edoardo Marcucci & Valerio Gatta, 2013. "Non Linear Effects Of Urban Freight Transport Policies: A Retailer'S Perspective," Working Papers 0113, CREI Università degli Studi Roma Tre, revised 2013.
    15. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    2. Jarosław Wątróbski & Krzysztof Małecki & Kinga Kijewska & Stanisław Iwan & Artur Karczmarczyk & Russell G. Thompson, 2017. "Multi-Criteria Analysis of Electric Vans for City Logistics," Sustainability, MDPI, vol. 9(8), pages 1-34, August.
    3. Mohammad Zaher Akkad & Tamás Bányai, 2020. "Multi-Objective Approach for Optimization of City Logistics Considering Energy Efficiency," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    4. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    5. Antonello Ignazio Croce & Giuseppe Musolino & Corrado Rindone & Antonino Vitetta, 2020. "Route and Path Choices of Freight Vehicles: A Case Study with Floating Car Data," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    6. Florio, Alexandre M. & Gendreau, Michel & Hartl, Richard F. & Minner, Stefan & Vidal, Thibaut, 2023. "Recent advances in vehicle routing with stochastic demands: Bayesian learning for correlated demands and elementary branch-price-and-cut," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1081-1093.
    7. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    8. Lai, Kexing & Chen, Tao & Natarajan, Balasubramaniam, 2020. "Optimal scheduling of electric vehicles car-sharing service with multi-temporal and multi-task operation," Energy, Elsevier, vol. 204(C).
    9. Maximiliano Cubillos & Mauro Dell’Amico & Ola Jabali & Federico Malucelli & Emanuele Tresoldi, 2023. "An Enhanced Path Planner for Electric Vehicles Considering User-Defined Time Windows and Preferences," Energies, MDPI, vol. 16(10), pages 1-19, May.
    10. Zhangyuan He & Hans-Dietrich Haasis, 2019. "Integration of Urban Freight Innovations: Sustainable Inner-Urban Intermodal Transportation in the Retail/Postal Industry," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    11. Nicholas D. Kullman & Aurelien Froger & Jorge E. Mendoza & Justin C. Goodson, 2021. "frvcpy: An Open-Source Solver for the Fixed Route Vehicle Charging Problem," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1277-1283, October.
    12. Hamid R. Sayarshad & Vahid Mahmoodian & Nebojša Bojović, 2021. "Dynamic Inventory Routing and Pricing Problem with a Mixed Fleet of Electric and Conventional Urban Freight Vehicles," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    13. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    14. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    15. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    16. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    17. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    18. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    19. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    20. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5677-:d:632294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.