IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v54y2013icp67-78.html
   My bibliography  Save this article

A hybrid population heuristic for the heterogeneous vehicle routing problems

Author

Listed:
  • Liu, Shuguang

Abstract

The heterogeneous vehicle routing problem (HVRP) plays an important role in supply chain logistics. Two variants of HVRP are treated in this paper: one with fixed and variable costs (HVRPFD), and the other with only variable cost (HVRPD). A hybrid population heuristic that is able to solve both variants is proposed, in which a population of solutions are progressively evolved by crossovers and local searches. Computational results on a set of eight benchmark test problems from literature show that the proposed heuristic produces excellent solutions in short computing times.

Suggested Citation

  • Liu, Shuguang, 2013. "A hybrid population heuristic for the heterogeneous vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 67-78.
  • Handle: RePEc:eee:transe:v:54:y:2013:i:c:p:67-78
    DOI: 10.1016/j.tre.2013.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554513000604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2013.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shuguang & Huang, Weilai & Ma, Huiming, 2009. "An effective genetic algorithm for the fleet size and mix vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(3), pages 434-445, May.
    2. N A Wassan & I H Osman, 2002. "Tabu search variants for the mix fleet vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(7), pages 768-782, July.
    3. Chung-Lun Li & David Simchi-Levi, 1990. "Worst-Case Analysis of Heuristics for Multidepot Capacitated Vehicle Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 64-73, February.
    4. Renaud, Jacques & Boctor, Fayez F., 2002. "A sweep-based algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 140(3), pages 618-628, August.
    5. Li, Xiangyong & Tian, Peng & Aneja, Y.P., 2010. "An adaptive memory programming metaheuristic for the heterogeneous fixed fleet vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1111-1127, November.
    6. Beasley, JE, 1983. "Route first--Cluster second methods for vehicle routing," Omega, Elsevier, vol. 11(4), pages 403-408.
    7. Subramanian, Anand & Penna, Puca Huachi Vaz & Uchoa, Eduardo & Ochi, Luiz Satoru, 2012. "A hybrid algorithm for the Heterogeneous Fleet Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 221(2), pages 285-295.
    8. Tarantilis, C. D. & Kiranoudis, C. T. & Vassiliadis, V. S., 2004. "A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 152(1), pages 148-158, January.
    9. Salhi, Said & Rand, Graham K., 1993. "Incorporating vehicle routing into the vehicle fleet composition problem," European Journal of Operational Research, Elsevier, vol. 66(3), pages 313-330, May.
    10. C D Tarantilis & C T Kiranoudis & V S Vassiliadis, 2003. "A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 65-71, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    2. Houda Derbel & Bassem Jarboui & Rim Bhiri, 2019. "A skewed general variable neighborhood search algorithm with fixed threshold for the heterogeneous fleet vehicle routing problem," Annals of Operations Research, Springer, vol. 272(1), pages 243-272, January.
    3. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    4. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    5. Xiaodan Wu & Ruichang Li & Chao-Hsien Chu & Richard Amoasi & Shan Liu, 2022. "Managing pharmaceuticals delivery service using a hybrid particle swarm intelligence approach," Annals of Operations Research, Springer, vol. 308(1), pages 653-684, January.
    6. Du, Jia Yan & Brunner, Jens O. & Kolisch, Rainer, 2014. "Planning towing processes at airports more efficiently," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 293-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    2. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    3. Salhi, Said & Wassan, Niaz & Hajarat, Mutaz, 2013. "The Fleet Size and Mix Vehicle Routing Problem with Backhauls: Formulation and Set Partitioning-based Heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 22-35.
    4. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    5. Imran, Arif & Salhi, Said & Wassan, Niaz A., 2009. "A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 509-518, September.
    6. Subramanian, Anand & Penna, Puca Huachi Vaz & Uchoa, Eduardo & Ochi, Luiz Satoru, 2012. "A hybrid algorithm for the Heterogeneous Fleet Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 221(2), pages 285-295.
    7. Brandão, José, 2009. "A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 716-728, June.
    8. Houda Derbel & Bassem Jarboui & Rim Bhiri, 2019. "A skewed general variable neighborhood search algorithm with fixed threshold for the heterogeneous fleet vehicle routing problem," Annals of Operations Research, Springer, vol. 272(1), pages 243-272, January.
    9. Belfiore, PatrI´cia & Yoshida Yoshizaki, Hugo Tsugunobu, 2009. "Scatter search for a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries in Brazil," European Journal of Operational Research, Elsevier, vol. 199(3), pages 750-758, December.
    10. Mehdi Nourinejad & Matthew J. Roorda, 2017. "A continuous approximation model for the fleet composition problem on the rectangular grid," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 373-401, March.
    11. Tarantilis, C.D. & Kiranoudis, C.T., 2007. "A flexible adaptive memory-based algorithm for real-life transportation operations: Two case studies from dairy and construction sector," European Journal of Operational Research, Elsevier, vol. 179(3), pages 806-822, June.
    12. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "Implicit depot assignments and rotations in vehicle routing heuristics," European Journal of Operational Research, Elsevier, vol. 237(1), pages 15-28.
    13. Patrícia Belfiore & Luiz Fávero, 2007. "Scatter search for the fleet size and mix vehicle routing problem with time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 15(4), pages 351-368, November.
    14. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    15. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    16. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    17. Mohamed Amjath & Laoucine Kerbache & James MacGregor Smith, 2024. "A Closed Queueing Networks Approach for an Optimal Heterogeneous Fleet Size of an Inter-Facility Bulk Material Transfer System," Logistics, MDPI, vol. 8(1), pages 1-38, March.
    18. Villegas, Juan G. & Prins, Christian & Prodhon, Caroline & Medaglia, Andrés L. & Velasco, Nubia, 2013. "A matheuristic for the truck and trailer routing problem," European Journal of Operational Research, Elsevier, vol. 230(2), pages 231-244.
    19. N A Wassan, 2006. "A reactive tabu search for the vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 111-116, January.
    20. C D Tarantilis & E E Zachariadis & C T Kiranoudis, 2008. "A guided tabu search for the heterogeneous vehicle routeing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1659-1673, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:54:y:2013:i:c:p:67-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.