IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i2p314-331.html
   My bibliography  Save this article

On the use of leading safety indicators in maritime and their feasibility for Maritime Autonomous Surface Ships

Author

Listed:
  • Krzysztof Wróbel
  • Mateusz Gil
  • PrzemysÅ‚aw Krata
  • Karol Olszewski
  • Jakub Montewka

Abstract

Although the safety of prospective Maritime Autonomous Surface Ships will largely depend on their ability to detect potential hazards and react to them, the contemporary scientific literature lacks the analysis of how to achieve this. This could be achieved through an application of leading safety indicators. The aim of the performed study was to identify the research directions of leading safety indicators in three safety-critical operational aspects of Maritime Autonomous Surface Ships: collision avoidance, intact stability, and communication. To achieve this, literature review is performed, taking into account scientific documents including journal and conference papers. The results indicate that the need for establishing operational leading safety indicators is recognized by numerous scholars, who sometimes make suggestions of what the set of indicators shall consist of. Some leading safety indicators for autonomous vessels are readily identifiable in the scientific literature and used in current practice. However, the research effort is lacking a holistic approach to the issue.

Suggested Citation

  • Krzysztof Wróbel & Mateusz Gil & PrzemysÅ‚aw Krata & Karol Olszewski & Jakub Montewka, 2023. "On the use of leading safety indicators in maritime and their feasibility for Maritime Autonomous Surface Ships," Journal of Risk and Reliability, , vol. 237(2), pages 314-331, April.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:314-331
    DOI: 10.1177/1748006X211027689
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211027689
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211027689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martha Grabowski & Premnath Ayyalasomayajula & Jason Merrick & Denise Mccafferty, 2007. "Accident precursors and safety nets: leading indicators of tanker operations safety," Maritime Policy & Management, Taylor & Francis Journals, vol. 34(5), pages 405-425, October.
    2. Montewka, Jakub & Goerlandt, Floris & Innes-Jones, Gemma & Owen, Douglas & Hifi, Yasmine & Puisa, Romanas, 2017. "Enhancing human performance in ship operations by modifying global design factors at the design stage," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 283-300.
    3. Aven, Terje & Heide, Bjørnar, 2009. "Reliability and validity of risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1862-1868.
    4. Lutz Kretschmann, 2020. "Leading indicators and maritime safety: predicting future risk with a machine learning approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-22, December.
    5. Govindaraj, T., 2008. "Characterizing performance in socio-technical systems: A modeling framework in the domain of nuclear power," Omega, Elsevier, vol. 36(1), pages 10-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goerlandt, Floris & Islam, Samsul, 2021. "A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    3. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Rosqvist, Tony, 2010. "On the validation of risk analysis—A commentary," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1261-1265.
    5. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    7. Overholts II, Dale L. & Bell, John E. & Arostegui, Marvin A., 2009. "A location analysis approach for military maintenance scheduling with geographically dispersed service areas," Omega, Elsevier, vol. 37(4), pages 838-852, August.
    8. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    9. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    10. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    11. Wang, Tai-Ran & Pedroni, Nicola & Zio, Enrico, 2016. "Identification of protective actions to reduce the vulnerability of safety-critical systems to malevolent acts: A sensitivity-based decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 9-18.
    12. Jon T Selvik & Eirik B Abrahamsen, 2017. "On the meaning of accuracy and precision in a risk analysis context," Journal of Risk and Reliability, , vol. 231(2), pages 91-100, April.
    13. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Rae, Andrew & Alexander, Rob & McDermid, John, 2014. "Fixing the cracks in the crystal ball: A maturity model for quantitative risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 67-81.
    16. Özkan Uğurlu & Serdar Kum & Yusuf Volkan Aydoğdu, 2017. "Analysis of occupational accidents encountered by deck cadets in maritime transportation," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(3), pages 304-322, April.
    17. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    18. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    19. Raben, Ditte Caroline & Bogh, Søren Bie & Viskum, Birgit & Mikkelsen, Kim L. & Hollnagel, Erik, 2018. "Learn from what goes right: A demonstration of a new systematic method for identification of leading indicators in healthcare," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 187-198.
    20. Ran Gao & Albert P.C. Chan & Wahyudi P. Utama & Hafiz Zahoor, 2016. "Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism," IJERPH, MDPI, vol. 13(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:314-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.