IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v214y2021ics095183202100243x.html
   My bibliography  Save this article

A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia

Author

Listed:
  • Goerlandt, Floris
  • Islam, Samsul

Abstract

Coastal communities are vulnerable to the consequences of disasters such as hurricanes, earthquakes and tsunamis. Often, such communities are heavily dependent on maritime transportation for the ingress of essential goods such as food, fuel, and medicine. Major natural disasters can cause damage to critical infrastructures, causing disruptions to logistics chains and delays in the delivery of essential goods to vulnerable coastal communities. Estimating such delays is an important aspect of disaster preparedness planning, as it can support community-focused risk mitigating policies, improve emergency response operations, and help identify resilience strategies. In this article, a Bayesian Network risk model is developed for estimating the delays in maritime transportation to island communities in British Columbia, resulting from a major earthquake in the region. The model takes a regional scope and is primarily expert-driven. Correspondingly, it uses information about the earthquake intensity, infrastructure damages, impacts on shipping operations, and community needs to estimate delay times of the operability of different shipping services in the region under various scenarios. The model is illustrated through a series of hypothetical scenarios. Various validation tests furthermore indicate an adequate model performance for supporting regional disaster preparedness planning for the immediate response phase following an earthquake.

Suggested Citation

  • Goerlandt, Floris & Islam, Samsul, 2021. "A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:reensy:v:214:y:2021:i:c:s095183202100243x
    DOI: 10.1016/j.ress.2021.107708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202100243X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruth Banomyong & Paitoon Varadejsatitwong & Richard Oloruntoba, 2019. "A systematic review of humanitarian operations, humanitarian logistics and humanitarian supply chain performance literature 2005 to 2016," Annals of Operations Research, Springer, vol. 283(1), pages 71-86, December.
    2. Susan L. Cutter & Kevin D. Ash & Christopher T. Emrich, 2016. "Urban–Rural Differences in Disaster Resilience," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(6), pages 1236-1252, November.
    3. Montewka, Jakub & Goerlandt, Floris & Innes-Jones, Gemma & Owen, Douglas & Hifi, Yasmine & Puisa, Romanas, 2017. "Enhancing human performance in ship operations by modifying global design factors at the design stage," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 283-300.
    4. Fu, Shanshan & Zhang, Di & Montewka, Jakub & Yan, Xinping & Zio, Enrico, 2016. "Towards a probabilistic model for predicting ship besetting in ice in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 124-136.
    5. Stephanie E. Chang & Hadi Dowlatabadi, 2019. "Transportation Disruptions and Regional Supply Chains: A Modeling Framework with Application to Coastal Shipping," Advances in Spatial Science, in: Yasuhide Okuyama & Adam Rose (ed.), Advances in Spatial and Economic Modeling of Disaster Impacts, chapter 0, pages 243-264, Springer.
    6. Aven, Terje & Heide, Bjørnar, 2009. "Reliability and validity of risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1862-1868.
    7. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Yasuhide Okuyama & Adam Rose, 2019. "Advances in Spatial and Economic Modeling of Disaster Impacts: Introduction," Advances in Spatial Science, in: Yasuhide Okuyama & Adam Rose (ed.), Advances in Spatial and Economic Modeling of Disaster Impacts, chapter 0, pages 1-11, Springer.
    9. Lee, Seulbi & Choi, Minji & Lee, Hyun-Soo & Park, Moonseo, 2020. "Bayesian network-based seismic damage estimation for power and potable water supply systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    10. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Aven, Terje & Guikema, Seth, 2011. "Whose uncertainty assessments (probability distributions) does a risk assessment report: the analysts' or the experts'?," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1257-1262.
    12. Kameshwar, Sabarethinam & Cox, Daniel T. & Barbosa, Andre R. & Farokhnia, Karim & Park, Hyoungsu & Alam, Mohammad S. & van de Lindt, John W., 2019. "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    14. Heng Cai & Nina S. N. Lam & Lei Zou & Yi Qiang, 2018. "Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(5), pages 1260-1279, September.
    15. Costa, Rodrigo & Haukaas, Terje & Chang, Stephanie E. & Dowlatabadi, Hadi, 2019. "Object-oriented model of the seismic vulnerability of the fuel distribution network in coastal British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 11-23.
    16. James S. Hodges, 1991. "Six (Or So) Things You Can Do with a Bad Model," Operations Research, INFORMS, vol. 39(3), pages 355-365, June.
    17. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    18. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    19. Yasuhide Okuyama & Adam Rose (ed.), 2019. "Advances in Spatial and Economic Modeling of Disaster Impacts," Advances in Spatial Science, Springer, number 978-3-030-16237-5, Fall.
    20. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    21. Qu, Xiaobo & Meng, Qiang, 2012. "The economic importance of the Straits of Malacca and Singapore: An extreme-scenario analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 258-265.
    22. Zhang, D. & Yan, X.P. & Yang, Z.L. & Wall, A. & Wang, J., 2013. "Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 93-105.
    23. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    24. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yue & Feng, Qiang & Fan, Dongming & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2023. "Optimization of maritime support network with relays under uncertainty: A novel matheuristics method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. İbrahim Miraç Eligüzel & Eren Özceylan & Gerhard-Wilhelm Weber, 2023. "Location-allocation analysis of humanitarian distribution plans: a case of United Nations Humanitarian Response Depots," Annals of Operations Research, Springer, vol. 324(1), pages 825-854, May.
    5. Adhita, I Gde Manik Sukanegara & Fuchi, Masaki & Konishi, Tsukasa & Fujimoto, Shoji, 2023. "Ship navigation from a Safety-II perspective: A case study of training-ship operation in coastal area," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    4. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Xu, Sheng & Kim, Ekaterina & Haugen, Stein & Zhang, Mingyang, 2022. "A Bayesian network risk model for predicting ship besetting in ice during convoy operations along the Northern Sea Route," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    13. Severin Reissl & Alessandro Caiani & Francesco Lamperti & Mattia Guerini & Fabio Vanni & Giorgio Fagiolo & Tommaso Ferraresi & Leonardo Ghezzi & Mauro Napoletano & Andrea Roventini, 2022. "Assessing the Economic Impact of Lockdowns in Italy: A Computational Input–Output Approach [Nonlinear Production Networks with an Application to the Covid-19 Crisis]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(2), pages 358-409.
    14. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Alina Botezat & Mihaela David & Cristian Incaltarau & Peter Nijkamp, 2021. "The Illusion of Urbanization: Impact of Administrative Reform on Communities’ Resilience," International Regional Science Review, , vol. 44(1), pages 33-84, January.
    16. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    17. Rameshwar Dubey & David J. Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022. "Agility in humanitarian supply chain: an organizational information processing perspective and relational view," Annals of Operations Research, Springer, vol. 319(1), pages 559-579, December.
    18. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Paula Camargo Fiorini & Charbel Jose Chiappetta Jabbour & Ana Beatriz Lopes de Sousa Jabbour & Gary Ramsden, 2022. "The human side of humanitarian supply chains: a research agenda and systematization framework," Annals of Operations Research, Springer, vol. 319(1), pages 911-936, December.
    20. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:214:y:2021:i:c:s095183202100243x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.