IDEAS home Printed from
   My bibliography  Save this article

A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis


  • Joseph F. Levy
  • Marjorie A. Rosenberg


Introduction. Estimating costs of medical care attributable to treatments over time is difficult due to costs that cannot be explained solely by observed risk factors. Unobserved risk factors cannot be accounted for using standard econometric techniques, potentially leading to imprecise prediction. The goal of this work is to describe methodology to account for latent variables in the prediction of longitudinal costs. Methods. Latent class growth mixture models (LCGMMs) predict class membership using observed risk factors and class-specific distributions of costs over time. Our motivating example models cost of care for children with cystic fibrosis from birth to age 17. We compare a generalized linear mixed model (GLMM) with LCGMMs. Both models use the same covariates and distribution to predict average costs by combinations of observed risk factors. We adopt a Bayesian estimation approach to both models and compare results using the deviance information criterion (DIC). Results. The 3-class LCGMM model has a lower DIC than the GLMM. The LCGMM latent classes include a low-cost group where costs increase slowly over time, a medium-cost group with initial higher costs than the low-cost group and with more rapidly increasing costs at older ages, and a high-cost group with a U-shaped trajectory. The risk profile-specific mixtures of classes are used to predict costs over time. The LCGMM model shows more delineation of costs by age by risk profile and with less uncertainty than the GLMM model. Conclusions. The LCGMM approach creates flexible prediction models when using longitudinal cost data. The Bayesian estimation approach to LCGMM presented fits well into cost-effectiveness modeling where the estimated trajectories and class membership can be used for prediction.

Suggested Citation

  • Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
  • Handle: RePEc:sae:medema:v:39:y:2019:i:5:p:593-604
    DOI: 10.1177/0272989X19859875

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    References listed on IDEAS

    1. Nicola J. Cooper & Paul C. Lambert & Keith R. Abrams & Alexander J. Sutton, 2007. "Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis," Health Economics, John Wiley & Sons, Ltd., vol. 16(1), pages 37-56, January.
    2. Martin J. Buxton & Michael F. Drummond & Ben A. Van Hout & Richard L. Prince & Trevor A. Sheldon & Thomas Szucs & Muriel Vray, 1997. "Modelling in Ecomomic Evaluation: An Unavoidable Fact of Life," Health Economics, John Wiley & Sons, Ltd., vol. 6(3), pages 217-227, May.
    3. Anirban Basu & Willard G. Manning & John Mullahy, 2004. "Comparing alternative models: log vs Cox proportional hazard?," Health Economics, John Wiley & Sons, Ltd., vol. 13(8), pages 749-765, August.
    4. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, November.
    5. Miika Linna, 1998. "Measuring hospital cost efficiency with panel data models," Health Economics, John Wiley & Sons, Ltd., vol. 7(5), pages 415-427, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Haji Ali Afzali & Laura Bojke & Jonathan Karnon, 2018. "Model Structuring for Economic Evaluations of New Health Technologies," PharmacoEconomics, Springer, vol. 36(11), pages 1309-1319, November.
    2. An Tran-Duy & Annelies Boonen & Wietske Kievit & Piet Riel & Mart Laar & Johan Severens, 2014. "Modelling Outcomes of Complex Treatment Strategies Following a Clinical Guideline for Treatment Decisions in Patients with Rheumatoid Arthritis," PharmacoEconomics, Springer, vol. 32(10), pages 1015-1028, October.
    3. Nicholas Graves & Adrian G Barnett & Kate A Halton & Jacob L Veerman & Elisabeth Winkler & Neville Owen & Marina M Reeves & Alison Marshall & Elizabeth Eakin, 2009. "Cost-Effectiveness of a Telephone-Delivered Intervention for Physical Activity and Diet," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-8, September.
    4. Dixon, Padraig & Harrison, Sean & Hollingworth, William & Davies, Neil M. & Davey Smith, George, 2022. "Estimating the causal effect of liability to disease on healthcare costs using Mendelian Randomization," Economics & Human Biology, Elsevier, vol. 46(C).
    5. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    6. Sun-Young Kim & Sue Goldie, 2008. "Cost-Effectiveness Analyses of Vaccination Programmes," PharmacoEconomics, Springer, vol. 26(3), pages 191-215, March.
    7. Steven Simoens, 2009. "Health Economic Assessment: A Methodological Primer," IJERPH, MDPI, vol. 6(12), pages 1-17, November.
    8. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    9. Arantzazu Arrospide & Oliver Ibarrondo & Iván Castilla & Igor Larrañaga & Javier Mar, 2022. "Development and Validation of a Discrete Event Simulation Model to Evaluate the Cardiovascular Impact of Population Policies for Obesity," Medical Decision Making, , vol. 42(2), pages 241-254, February.
    10. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    11. Noémi Kreif & Richard Grieve & M. Zia Sadique, 2013. "Statistical Methods For Cost‐Effectiveness Analyses That Use Observational Data: A Critical Appraisal Tool And Review Of Current Practice," Health Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 486-500, April.
    12. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    13. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    14. Round, Jeff, 2012. "Is a QALY still a QALY at the end of life?," Journal of Health Economics, Elsevier, vol. 31(3), pages 521-527.
    15. Xinyue Dong & Xiaoning He & Jing Wu, 2022. "Cost Effectiveness of the First‐in‐Class ARNI (Sacubitril/Valsartan) for the Treatment of Essential Hypertension in a Chinese Setting," PharmacoEconomics, Springer, vol. 40(12), pages 1187-1205, December.
    16. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    17. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    18. Stephen Morris & Kurinchi S Gurusamy & Jessica Sheringham & Brian R Davidson, 2015. "Cost-Effectiveness Analysis of Endoscopic Ultrasound versus Magnetic Resonance Cholangiopancreatography in Patients with Suspected Common Bile Duct Stones," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-12, March.
    19. Gaskin, Darrell J. & Zare, Hossein & Delarmente, Benjo A., 2021. "Geographic disparities in COVID-19 infections and deaths: The role of transportation," Transport Policy, Elsevier, vol. 102(C), pages 35-46.
    20. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:39:y:2019:i:5:p:593-604. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.