IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v22y2002i2p163-172.html

A Comparison of Bayesian Methods for Profiling Hospital Performance

Author

Listed:
  • Peter C. Austin

    (Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada and the Department of Public Health Sciences, University of Toronto, Toronto, Ontario, Canada)

Abstract

There is a growing interest in the use of Bayesian methods for profiling institutional performance. In the literature, several studies have compared different frequentist methods for classifying hospitals as performance outliers. The purpose of this study was to compare 4 different Bayesian methods for classifying hospitals as outcomes outliers, using 30-day hospital-level mortality rates for a cohort of acute myocardial infarction patients as a test case. The 1st Bayesian method involved determining the probability that a hospital’s mortality rate for an average patient exceeded a specified threshold. The 2nd method involved ranking hospitals according to their mortality rate for an average patient. The 3rd method involved determining the probability that a hospital’s standardized mortality ratio exceeded a specified threshold. The 4th method involved ranking hospitals according to their standardized mortality ratio. In most of the scenarios examined, there was only marginal agreement between the different methods. In only 4 of 19 comparisons, was there good agreement between the different methods (0.40 kappa 0.75). Methods based on ranking institutions were relatively insensitive to differences between hospitals. These inconsistencies raise questions about the choice of methods for classifying hospital performance, and they suggest a need for urgent research into which methods are best able to discriminate between institutions and which are most meaningful to decision makers.

Suggested Citation

  • Peter C. Austin, 2002. "A Comparison of Bayesian Methods for Profiling Hospital Performance," Medical Decision Making, , vol. 22(2), pages 163-172, April.
  • Handle: RePEc:sae:medema:v:22:y:2002:i:2:p:163-172
    DOI: 10.1177/0272989X0202200213
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X0202200213
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X0202200213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lisa I. Iezzoni & Michael Shwartz & Arlene S. Ash & Yevgenia D. Mackiernan, 1996. "Predicting In-hospital Mortality for Stroke Patients," Medical Decision Making, , vol. 16(4), pages 348-356, October.
    2. Harvey Goldstein & David J. Spiegelhalter, 1996. "League Tables and Their Limitations: Statistical Issues in Comparisons of Institutional Performance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 385-409, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duen-Yian Yeh & Ching-Hsue Cheng, 2016. "Performance Management of Taiwan’s National Hospitals," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 187-213, January.
    2. David I. Ohlssen & Linda D. Sharples & David J. Spiegelhalter, 2007. "A hierarchical modelling framework for identifying unusual performance in health care providers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 865-890, October.
    3. Johannes Hengelbrock & Johannes Rauh & Jona Cederbaum & Maximilian Kähler & Michael Höhle, 2023. "Hospital profiling using Bayesian decision theory," Biometrics, The International Biometric Society, vol. 79(3), pages 2757-2769, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    2. Yeow Meng Thum, 2003. "Measuring Progress Toward a Goal," Sociological Methods & Research, , vol. 32(2), pages 153-207, November.
    3. David Afshartous & Michael Wolf, 2007. "Avoiding ‘data snooping’ in multilevel and mixed effects models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1035-1059, October.
    4. Kosmopoulou, Anna & Panaretos, John, 1998. "Assessment of School Effectiveness in Greece using Multilevel Models," MPRA Paper 6279, University Library of Munich, Germany.
    5. George Leckie, 2022. "A celebration of Harvey Goldstein’s lifetime contributions: Memories of working with Harvey Goldstein on educational research and statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 758-762, July.
    6. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2014. "How to improve the prediction based on citation impact percentiles for years shortly after the publication date?," Journal of Informetrics, Elsevier, vol. 8(1), pages 175-180.
    7. Nicholas Tibor Longford, 2016. "Decision Theory Applied to Selecting the Winners, Ranking, and Classification," Journal of Educational and Behavioral Statistics, , vol. 41(4), pages 420-442, August.
    8. David Rappoport & José Miguel Benavente & Patricio Meller, 2004. "Rankings de Universidades Chilenas Según los Ingresos de sus Titulados," Working Papers Central Bank of Chile 306, Central Bank of Chile.
    9. Mutz, Rüdiger & Daniel, Hans-Dieter, 2018. "The bibliometric quotient (BQ), or how to measure a researcher’s performance capacity: A Bayesian Poisson Rasch model," Journal of Informetrics, Elsevier, vol. 12(4), pages 1282-1295.
    10. Magne Mogstad & Joseph P Romano & Azeem M Shaikh & Daniel Wilhelm, 2024. "Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 476-518.
    11. Giuseppina Guagnano & Maria Rita Sebastiani, 2018. "Away from Dissatisfaction, Closer to Well-Being: A Multidimensional Synthetic Measure," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 977-997, April.
    12. Manuel Gomes & Nils Gutacker & Chris Bojke & Andrew Street, 2014. "Addressing missing data in patient-reported outcome measures (PROMs): implications for comparing provider performance," Working Papers 101cherp, Centre for Health Economics, University of York.
    13. Daraio, Cinzia & Bonaccorsi, Andrea & Simar, Léopold, 2015. "Rankings and university performance: A conditional multidimensional approach," European Journal of Operational Research, Elsevier, vol. 244(3), pages 918-930.
    14. Andrew I. Friedson & William C. Horrace & Allison F. Marier, 2019. "So Many Hospitals, So Little Information: How Hospital Value‐Based Purchasing Is a Game of Chance," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 773-799, October.
    15. repec:lan:wpaper:991 is not listed on IDEAS
    16. Bratti, Massimiliano & Checchi, Daniele, 2013. "Re-testing PISA Students One Year Later: On School Value Added Estimation Using OECD-PISA," IZA Discussion Papers 7722, Institute of Labor Economics (IZA).
    17. Bazylik, Sergei & Mogstad, Magne & Romano, Joseph P. & Shaikh, Azeem M. & Wilhelm, Daniel, 2025. "Finite- and large-sample inference for ranks using multinomial data with an application to ranking political parties," Journal of Econometrics, Elsevier, vol. 250(C).
    18. Nils Gutacker & Andrew Street, 2015. "Multidimensional performance assessment using dominance criteria," Working Papers 115cherp, Centre for Health Economics, University of York.
    19. Nils Gutacker & Andrew Street, 2018. "Multidimensional performance assessment of public sector organisations using dominance criteria," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 13-27, February.
    20. Burgess Jr., James F. & Christiansen, Cindy L. & Michalak, Sarah E. & Morris, Carl N., 2000. "Medical profiling: improving standards and risk adjustments using hierarchical models," Journal of Health Economics, Elsevier, vol. 19(3), pages 291-309, May.
    21. Sulis, Isabella & Giambona, Francesca & Porcu, Mariano, 2020. "Adjusted indicators of quality and equity for monitoring the education systems over time. Insights on EU15 countries from PISA surveys," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:22:y:2002:i:2:p:163-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.