IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v50y2023i6p1591-1606.html
   My bibliography  Save this article

Feasibility assessment of solar photovoltaic deployments on building surfaces with the constraint of visual impacts

Author

Listed:
  • He Zheng
  • Bo Wu
  • Hui Lin
  • Junsong Jia
  • Heyi Wei

Abstract

As a major component of social acceptance, visual impact is often considered a significant constraint in solar applications. Visual impact assessment of solar applications, however, has been limited to pedestrians in previous studies. The extent to which PV systems can have visual impacts on occupants and whether it is necessary to include occupants in the measurement of visual impact remains uncertain. To fill this gap, we extended it from pedestrians to occupants and proposed a quantitative method to integrate pedestrians and occupants into a framework, combining the estimation of solar potential for the feasibility assessment of PV applications in a built environment. The concept is tested with a real case, located in Qingdao city, China, to present the technical flowchart for the feasibility assessment of solar PV deployments with the visual constraint. Building surfaces with qualified solar irradiation and low visibility were identified and compared in two cases, that is, with and without the inclusion of occupants as the visual constraint. The comparison results show that the change of suitable building surfaces for solar applications is 172,306Â m 2 (21% of suitable area) and 126 GWh (19% of yield energy) across the study area, indicating the significance of including occupants in the visibility assessment for the deployment of solar applications. The proposed method considers the visual constraint for the feasibility assessment of solar applications from the perspective of pedestrians and occupants, and it is helpful to identify the suitable surfaces for the large-scale deployment of solar applications at an early planning stage of solar city.

Suggested Citation

  • He Zheng & Bo Wu & Hui Lin & Junsong Jia & Heyi Wei, 2023. "Feasibility assessment of solar photovoltaic deployments on building surfaces with the constraint of visual impacts," Environment and Planning B, , vol. 50(6), pages 1591-1606, July.
  • Handle: RePEc:sae:envirb:v:50:y:2023:i:6:p:1591-1606
    DOI: 10.1177/23998083221142196
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083221142196
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083221142196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wong, Man Sing & Zhu, Rui & Liu, Zhizhao & Lu, Lin & Peng, Jinqing & Tang, Zhaoqin & Lo, Chung Ho & Chan, Wai Ki, 2016. "Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies," Renewable Energy, Elsevier, vol. 99(C), pages 325-335.
    2. Lene Lottrup & Ulrika K. Stigsdotter & Henrik Meilby & Anne Grete Claudi, 2015. "The Workplace Window View: A Determinant of Office Workers' Work Ability and Job Satisfaction," Landscape Research, Taylor & Francis Journals, vol. 40(1), pages 57-75, January.
    3. Lee, Kyung Sun & Lee, Jae Wook & Lee, Jae Seung, 2016. "Feasibility study on the relation between housing density and solar accessibility and potential uses," Renewable Energy, Elsevier, vol. 85(C), pages 749-758.
    4. Fernandez-Jimenez, L. Alfredo & Mendoza-Villena, Montserrat & Zorzano-Santamaria, Pedro & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro & Zorzano-Alba, Enrique & Falces, Alberto, 2015. "Site selection for new PV power plants based on their observability," Renewable Energy, Elsevier, vol. 78(C), pages 7-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    2. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    3. Jurasz, Jakub & Piasecki, Adam & Hunt, Julian & Zheng, Wandong & Ma, Tao & Kies, Alexander, 2022. "Building integrated pumped-storage potential on a city scale: An analysis based on geographic information systems," Energy, Elsevier, vol. 242(C).
    4. Sofia Spyridonidou & Eva Loukogeorgaki & Dimitra G. Vagiona & Teresa Bertrand, 2022. "Towards a Sustainable Spatial Planning Approach for PV Site Selection in Portugal," Energies, MDPI, vol. 15(22), pages 1-22, November.
    5. Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
    6. Victoria Linn Lygum & Katia Dupret & Peter Bentsen & Dorthe Djernis & Sidse Grangaard & Yun Ladegaard & Charlotte Petersson Troije, 2023. "Greenspace as Workplace: Benefits, Challenges and Essentialities in the Physical Environment," IJERPH, MDPI, vol. 20(17), pages 1-19, August.
    7. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    8. Botelho, Anabela & Lourenço-Gomes, Lina & Pinto, Lígia & Sousa, Sara & Valente, Marieta, 2017. "Accounting for local impacts of photovoltaic farms: The application of two stated preferences approaches to a case-study in Portugal," Energy Policy, Elsevier, vol. 109(C), pages 191-198.
    9. Ran Xu & Stephen Wittkopf & Christian Roeske, 2017. "Quantitative Evaluation of BIPV Visual Impact in Building Retrofits Using Saliency Models," Energies, MDPI, vol. 10(5), pages 1-16, May.
    10. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    11. Dehwah, Ammar H.A. & Asif, Muhammad, 2019. "Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates," Renewable Energy, Elsevier, vol. 131(C), pages 1288-1299.
    12. Citlaly Pérez & Pedro Ponce & Alan Meier & Lourdes Dorantes & Jorge Omar Sandoval & Javier Palma & Arturo Molina, 2022. "S4 Framework for the Integration of Solar Energy Systems in Small and Medium-Sized Manufacturing Companies in Mexico," Energies, MDPI, vol. 15(19), pages 1-28, September.
    13. Byeong Gwan Bhang & Gyu Gwang Kim & Hae Lim Cha & David Kwangsoon Kim & Jin Ho Choi & So Young Park & Hyung Keun Ahn, 2018. "Design Methods of Underwater Grounding Electrode Array by Considering Inter-Electrode Interference for Floating PVs," Energies, MDPI, vol. 11(4), pages 1-16, April.
    14. Peng, Jinqing & Lu, Lin & Wang, Meng, 2019. "A new model to evaluate solar spectrum impacts on the short circuit current of solar photovoltaic modules," Energy, Elsevier, vol. 169(C), pages 29-37.
    15. Shirazi, Ali Mohammad & Zomorodian, Zahra S. & Tahsildoost, Mohammad, 2019. "Techno-economic BIPV evaluation method in urban areas," Renewable Energy, Elsevier, vol. 143(C), pages 1235-1246.
    16. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    17. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    18. Kim, Byungil & Han, SangUk & Heo, Jae & Jung, Jaehoon, 2020. "Proof-of-concept of a two-stage approach for selecting suitable slopes on a highway network for solar photovoltaic systems: A case study in South Korea," Renewable Energy, Elsevier, vol. 151(C), pages 366-377.
    19. Chih-Chiang Wei, 2017. "Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan," Energies, MDPI, vol. 10(10), pages 1-26, October.
    20. Daniel Masterson & Margarita Triguero-Mas & Sandra Marquez & Wilma Zijlema & David Martinez & Christopher Gidlow & Graham Smith & Gemma Hurst & Marta Cirach & Regina Grazuleviciene & Magdalena Van den, 2022. "Use of the Natural Outdoor Environment in Different Populations in Europe in Relation to Access: Implications for Policy," IJERPH, MDPI, vol. 19(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:6:p:1591-1606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.