IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v32y2021i5p874-901.html
   My bibliography  Save this article

Environmental assessment of a hybrid system composed of solid oxide fuel cell, gas turbine and multiple effect evaporation desalination system

Author

Listed:
  • Sobhan Jehandideh
  • Hasan Hassanzade
  • Seyyed Ehsan Shakib

Abstract

This study deals with a solid oxide fuel cell- gas turbine (SOFC-GT) hybrid system coupled with a multi-effect evaporation desalination plant with steam condensation. The environmental evaluation is also done due to the importance of waste energy recovery especially waste heat in power generation systems. The evaporation desalination plant is studied for using the excess heat to produce freshwater. The thermodynamic relationships governing different components of the system are first provided, including fuel cells, heat exchangers, gas turbine, and desalination plant. Next, given the absence of previous research on the environmental effects of cogeneration systems, despite its necessity, the study system is analyzed from an environmental point of view. Accordingly, the impacts of the system performance parameters, including the fuel consumption coefficients, compressor pressure ratio, fuel pre-reforming percentage, and the steam to carbon ratio are investigated on the CO 2 , CO, and NOx emission rates. Based on the findings, it is concluded that of different species, the impacts of CO, CO 2 , and NOx emission rates are significant on the environment. Thus, the impacts of pressure ratio and pre-reforming percentage on their emission rates have been studied. The results revealed with increasing the compressor pressure ratio, increasing the fuel consumption coefficients, and decreasing the fuel cell's exhaust temperature, the CO and NOx emission rates and corresponding social costs diminished. On the other hand, with elevation of the ratio of steam to carbon, the recovery rate, the fuel cell's exhaust temperature, the concerned gas emission rates, and corresponding social costs increased.

Suggested Citation

  • Sobhan Jehandideh & Hasan Hassanzade & Seyyed Ehsan Shakib, 2021. "Environmental assessment of a hybrid system composed of solid oxide fuel cell, gas turbine and multiple effect evaporation desalination system," Energy & Environment, , vol. 32(5), pages 874-901, August.
  • Handle: RePEc:sae:engenv:v:32:y:2021:i:5:p:874-901
    DOI: 10.1177/0958305X20973575
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X20973575
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X20973575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mostafaeipour, Ali & Mostafaeipour, Neda, 2009. "Renewable energy issues and electricity production in Middle East compared with Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1641-1645, August.
    2. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    3. Chatrattanawet, Narissara & Saebea, Dang & Authayanun, Suthida & Arpornwichanop, Amornchai & Patcharavorachot, Yaneeporn, 2018. "Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches," Energy, Elsevier, vol. 146(C), pages 131-140.
    4. Owebor, K. & Oko, C.O.C. & Diemuodeke, E.O. & Ogorure, O.J., 2019. "Thermo-environmental and economic analysis of an integrated municipal waste-to-energy solid oxide fuel cell, gas-, steam-, organic fluid- and absorption refrigeration cycle thermal power plants," Applied Energy, Elsevier, vol. 239(C), pages 1385-1401.
    5. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    6. Beyrami, Javid & Chitsaz, Ata & Parham, Kiyan & Arild, Øystein, 2019. "Optimum performance of a single effect desalination unit integrated with a SOFC system by multi-objective thermo-economic optimization based on genetic algorithm," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar, 2020. "Thermodynamic, Economic, and Environmental Analyses of a Waste-Fired Trigeneration Plant," Energies, MDPI, vol. 13(10), pages 1-18, May.
    2. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    3. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Tan, Peng & Xu, Haoran & Chen, Bin & Yang, Fusheng & Zhang, Zaoxiao & Ni, Meng, 2020. "Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation," Energy, Elsevier, vol. 192(C).
    4. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    5. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    6. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    7. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    8. Amiralipour, M. & Kouhikamali, R., 2020. "Guilan combined power plant in Iran: As case study for feasibility investigation of converting the combined power plant into water and power unit," Energy, Elsevier, vol. 201(C).
    9. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    10. Li, Chen & Wang, Yinglong & Chen, Guanghui & Li, Quan & Gu, Xinchun & Li, Xin & Wang, Yuguang & Zhu, Zhaoyou & Li, Jianlong, 2022. "Thermodynamic analysis and process optimization of organosilicon distillation systems," Energy, Elsevier, vol. 252(C).
    11. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Maheshwari, Mayank & Singh, Onkar, 2020. "Thermo-economic analysis of combined cycle configurations with intercooling and reheating," Energy, Elsevier, vol. 205(C).
    13. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    14. Nematollahi, Omid & Hoghooghi, Hadi & Rasti, Mehdi & Sedaghat, Ahmad, 2016. "Energy demands and renewable energy resources in the Middle East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1172-1181.
    15. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    16. Chen, Wei-Ming & Kim, Hana, 2020. "Energy, economic, and social impacts of a clean energy economic policy: Fuel cells deployment in Delaware," Energy Policy, Elsevier, vol. 144(C).
    17. Ahmadi, P. & Fakhari, I. & Rosen, Marc A., 2022. "A comprehensive approach for tri-objective optimization of a novel advanced energy system with gas turbine prime mover, ejector cooling system and multi-effect desalination," Energy, Elsevier, vol. 254(PC).
    18. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    19. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    20. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:32:y:2021:i:5:p:874-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.