IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v31y2020i8p1385-1402.html
   My bibliography  Save this article

Strategic demand response framework for energy management in distribution system based on network loss sensitivity

Author

Listed:
  • Sampath Kumar
  • M Sushama

Abstract

This paper discusses an energy management system–based demand response scheduling strategy in distribution system. The proposed strategy includes customer payment minimization and network loss minimization as responsive load scheduling objectives through centralized approach. Two types of optimization strategies each based on payment minimization and network loss sensitivity are discussed in this paper. Thus, the proposed scheduling strategy can effectively resolve the optimality issue between different objectives of the distribution system scheduling under demand response penetration. The demand response scheduling strategies are simulated using standard IEEE 37 bus distribution test system through different cases of scheduling and optimization scenarios. The simulation results are presented, discussed, and compared with the base test cases without demand response penetration and without optimization strategies under demand response penetration to demonstrate the effectiveness of network loss, sensitivity consideration and optimization strategies in carrying out distribution system scheduling. In addition, sensitivity analysis is performed. The variation of distribution network performance is analyzed for various test cases and scenarios at different penetration levels.

Suggested Citation

  • Sampath Kumar & M Sushama, 2020. "Strategic demand response framework for energy management in distribution system based on network loss sensitivity," Energy & Environment, , vol. 31(8), pages 1385-1402, December.
  • Handle: RePEc:sae:engenv:v:31:y:2020:i:8:p:1385-1402
    DOI: 10.1177/0958305X19893041
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X19893041
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X19893041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
    2. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    3. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    4. Zeng, Bo & Wei, Xuan & Zhao, Dongbo & Singh, Chanan & Zhang, Jianhua, 2018. "Hybrid probabilistic-possibilistic approach for capacity credit evaluation of demand response considering both exogenous and endogenous uncertainties," Applied Energy, Elsevier, vol. 229(C), pages 186-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    4. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    5. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    6. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    7. Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
    8. Lim, Keumju & Lee, Jongsu & Lee, Hyunjoo, 2021. "Implementing automated residential demand response in South Korea: Consumer preferences and market potential," Utilities Policy, Elsevier, vol. 70(C).
    9. Motta, Vinicius N. & Anjos, Miguel F. & Gendreau, Michel, 2024. "Survey of optimization models for power system operation and expansion planning with demand response," European Journal of Operational Research, Elsevier, vol. 312(2), pages 401-412.
    10. Dranka, Géremi Gilson & Ferreira, Paula, 2020. "Load flexibility potential across residential, commercial and industrial sectors in Brazil," Energy, Elsevier, vol. 201(C).
    11. Francesco Mancini & Sabrina Romano & Gianluigi Lo Basso & Jacopo Cimaglia & Livio de Santoli, 2020. "How the Italian Residential Sector Could Contribute to Load Flexibility in Demand Response Activities: A Methodology for Residential Clustering and Developing a Flexibility Strategy," Energies, MDPI, vol. 13(13), pages 1-25, July.
    12. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    14. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    15. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    16. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    17. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    18. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    19. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    20. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:31:y:2020:i:8:p:1385-1402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.