IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v39y2018i6p209-234.html
   My bibliography  Save this article

A Mechanism for Allocating Benefits and Costs from Transmission Interconnections under Cooperation: A Case Study of the North Sea Offshore Grid

Author

Listed:
  • Martin Kristiansen
  • Francisco D. Muñoz
  • Shmuel Oren
  • Magnus KorpÃ¥s

Abstract

We propose a generic mechanism for allocating the benefits and costs that result from the development of international transmission interconnections under a cooperative agreement. The mechanism is based on a planning model that considers generation investments as a response to transmission developments, and the Shapley Value from cooperative game theory. This method provides a unique allocation of benefits and costs considering each country’s average incremental contribution to the cooperative agreement. The allocation satisfies an axiomatic definition of fairness. We demonstrate our results for three planned transmission interconnections in the North Sea and show that the proposed mechanism can be used as a basis for defining a set of Power Purchase Agreements among countries.

Suggested Citation

  • Martin Kristiansen & Francisco D. Muñoz & Shmuel Oren & Magnus KorpÃ¥s, 2018. "A Mechanism for Allocating Benefits and Costs from Transmission Interconnections under Cooperation: A Case Study of the North Sea Offshore Grid," The Energy Journal, , vol. 39(6), pages 209-234, November.
  • Handle: RePEc:sae:enejou:v:39:y:2018:i:6:p:209-234
    DOI: 10.5547/01956574.39.6.mkri
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.39.6.mkri
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.39.6.mkri?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francisco Munoz & Jean-Paul Watson, 2015. "A scalable solution framework for stochastic transmission and generation planning problems," Computational Management Science, Springer, vol. 12(4), pages 491-518, October.
    2. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
    3. Anna Grigoryeva, Mohammad R. Hesamzadeh, and Thomas Tangerås, 2018. "Energy System Transition in the Nordic Market: Challenges for Transmission Regulation and Governance," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    4. Gorenstein Dedecca, João & Lumbreras, Sara & Ramos, Andrés & Hakvoort, Rudi A. & Herder, Paulien M., 2018. "Expansion planning of the North Sea offshore grid: Simulation of integrated governance constraints," Energy Economics, Elsevier, vol. 72(C), pages 376-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lüth, Alexandra & Keles, Dogan, 2024. "Risks, strategies, and benefits of offshore energy hubs: A literature-based survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    2. Shu, Han & Mays, Jacob, 2025. "Transmission benefits and cost allocation under ambiguity," Energy Economics, Elsevier, vol. 141(C).
    3. Hassanzadeh Moghimi, Farzad & Boomsma, Trine K. & Siddiqui, Afzal S., 2024. "Transmission planning in an imperfectly competitive power sector with environmental externalities," Energy Economics, Elsevier, vol. 134(C).
    4. Badesa, Luis & Matamala, Carlos & Strbac, Goran, 2025. "Who should pay for frequency-containment ancillary services? Making responsible units bear the cost to shape investment in generation and loads," Energy Policy, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergen, Matías & Muñoz, Francisco D., 2018. "Quantifying the effects of uncertain climate and environmental policies on investments and carbon emissions: A case study of Chile," Energy Economics, Elsevier, vol. 75(C), pages 261-273.
    2. Go, Roderick S. & Munoz, Francisco D. & Watson, Jean-Paul, 2016. "Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards," Applied Energy, Elsevier, vol. 183(C), pages 902-913.
    3. Fernández, Mauricio & Muñoz, Francisco D. & Moreno, Rodrigo, 2020. "Analysis of imperfect competition in natural gas supply contracts for electric power generation: A closed-loop approach," Energy Economics, Elsevier, vol. 87(C).
    4. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    5. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    6. Amir Sadegh Zakeri & Hossein Askarian Abyaneh, 2017. "Transmission Expansion Planning Using TLBO Algorithm in the Presence of Demand Response Resources," Energies, MDPI, vol. 10(9), pages 1-15, September.
    7. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    8. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    9. Tosatto, Andrea & Beseler, Xavier Martínez & Østergaard, Jacob & Pinson, Pierre & Chatzivasileiadis, Spyros, 2022. "North Sea Energy Islands: Impact on national markets and grids," Energy Policy, Elsevier, vol. 167(C).
    10. Moiseeva, Ekaterina & Wogrin, Sonja & Hesamzadeh, Mohammad Reza, 2017. "Generation flexibility in ramp rates: Strategic behavior and lessons for electricity market design," European Journal of Operational Research, Elsevier, vol. 261(2), pages 755-771.
    11. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    12. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    13. Xiaomin Xu & Dongxiao Niu & Jinpeng Qiu & Peng Wang & Yanchao Chen, 2016. "Analysis and Optimization of Power Supply Structure Based on Markov Chain and Error Optimization for Renewable Energy from the Perspective of Sustainability," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    14. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    15. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    16. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    17. Shu, Han & Mays, Jacob, 2025. "Transmission benefits and cost allocation under ambiguity," Energy Economics, Elsevier, vol. 141(C).
    18. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    19. Sebastiano Vitali & Ruth Domínguez & Vittorio Moriggia, 2021. "Comparing stage-scenario with nodal formulation for multistage stochastic problems," 4OR, Springer, vol. 19(4), pages 613-631, December.
    20. Peecock, Anna & Huang, Jiangyi & Martinez-Felipe, Alfonso & McKenna, Russell, 2025. "Reviewing sector coupling in offshore energy system integration modelling: the North Sea context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:39:y:2018:i:6:p:209-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.