IDEAS home Printed from https://ideas.repec.org/a/sae/anname/v659y2015i1p33-47.html
   My bibliography  Save this article

On Building Better Mousetraps and Understanding the Human Condition

Author

Listed:
  • Jimmy Lin

Abstract

Over the past few years, we have seen the emergence of “big data†: disruptive technologies that have transformed commerce, science, and many aspects of society. Despite the tremendous enthusiasm for big data, there is no shortage of detractors. This article argues that many criticisms stem from a fundamental confusion over goals: whether the desired outcome of big data use is “better science†or “better engineering.†Critics point to the rejection of traditional data collection and analysis methods, confusion between correlation and causation, and an indifference to models with explanatory power. From the perspective of advancing social science, these are valid reservations. I contend, however, that if the end goal of big data use is to engineer computational artifacts that are more effective according to well-defined metrics, then whatever improves those metrics should be exploited without prejudice. Sound scientific reasoning, while helpful, is not necessary to improve engineering. Understanding the distinction between science and engineering resolves many of the apparent controversies surrounding big data and helps to clarify the criteria by which contributions should be assessed.

Suggested Citation

  • Jimmy Lin, 2015. "On Building Better Mousetraps and Understanding the Human Condition," The ANNALS of the American Academy of Political and Social Science, , vol. 659(1), pages 33-47, May.
  • Handle: RePEc:sae:anname:v:659:y:2015:i:1:p:33-47
    DOI: 10.1177/0002716215569174
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0002716215569174
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0002716215569174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    2. Markowitz, Sara & Nesson, Erik & Robinson, Joshua J., 2019. "The effects of employment on influenza rates," Economics & Human Biology, Elsevier, vol. 34(C), pages 286-295.
    3. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    4. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    5. Yangkun Huang & Xiaoping Xu & Sini Su, 2021. "Diverging from News Media: An Exploratory Study on the Changing Dynamics between Media and Public Attention on Cancer in China from 2011–2020," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    6. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    7. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    8. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    9. Tobias Preis & Federico Botta & Helen Susannah Moat, 2020. "Sensing global tourism numbers with millions of publicly shared online photographs," Environment and Planning A, , vol. 52(3), pages 471-477, May.
    10. D'Amuri, Francesco & Marcucci, Juri, 2009. "‘Google it!’ Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    11. Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
    12. Klaus Ackermann & Simon D Angus & Paul A Raschky, 2020. "Estimating Sleep and Work Hours from Alternative Data by Segmented Functional Classification Analysis, SFCA," SoDa Laboratories Working Paper Series 2020-04, Monash University, SoDa Laboratories.
    13. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    14. Breithaupt, Patrick & Kesler, Reinhold & Niebel, Thomas & Rammer, Christian, 2020. "Intangible capital indicators based on web scraping of social media," ZEW Discussion Papers 20-046, ZEW - Leibniz Centre for European Economic Research.
    15. Jensen, Carsten & Naumann, Elias, 2016. "Increasing pressures and support for public healthcare in Europe," Health Policy, Elsevier, vol. 120(6), pages 698-705.
    16. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    17. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    18. Bodo Herzog & Lana dos Santos, 2021. "Google Search in Exchange Rate Models: Hype or Hope?," JRFM, MDPI, vol. 14(11), pages 1-40, October.
    19. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    20. Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:anname:v:659:y:2015:i:1:p:33-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.