IDEAS home Printed from https://ideas.repec.org/a/sae/amerec/v60y2015i2p98-119.html

The Distributional Efficacy of Collaborative Learning on Student Outcomes

Author

Listed:
  • Kim P. Huynh
  • David T. Jacho-Chávez
  • James K. Self

Abstract

This study addresses self-selection and heterogeneity issues inherent in measuring the efficacy of voluntary training programs. We exploit data collected from Indiana University's introductory microeconomics course. In conjunction with their class, undergraduates were given the choice to participate in a voluntary training program called Collaborative Learning (CL), which is designed to encourage a self-discovery learning style. To address self-selection and heterogeneity in the effectiveness of CL, program evaluation methods were used to measure student performance. We find, amongst other things, that CL produces heterogeneous results e.g., the bottom 40 percentile of CL participants improved their performance the most, and that students at the higher end of the grade distribution achieve greater improvement in topic understanding. The latter is greater than can be associated with superior innate ability alone. Finally, parametric and non-parametric sensitivity analysis confirmed that the sign of the calculated treatment effects is robust to potential violations of the underlying assumptions.

Suggested Citation

  • Kim P. Huynh & David T. Jacho-Chávez & James K. Self, 2015. "The Distributional Efficacy of Collaborative Learning on Student Outcomes," The American Economist, Sage Publications, vol. 60(2), pages 98-119, September.
  • Handle: RePEc:sae:amerec:v:60:y:2015:i:2:p:98-119
    DOI: 10.1177/056943451506000202
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/056943451506000202
    Download Restriction: no

    File URL: https://libkey.io/10.1177/056943451506000202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mary Ellen Benedict & John Hoag, 2002. "Who's Afraid of Their Economics Classes? Why are Students Apprehensive about Introductory Economics Courses? An Empirical Investigation," The American Economist, Sage Publications, vol. 46(2), pages 31-44, October.
    2. Robert L. Moore, 2011. "The Effect of Group Composition on Individual Student Performance in an Introductory Economics Course," The Journal of Economic Education, Taylor & Francis Journals, vol. 42(2), pages 120-135, June.
    3. Francesco Bravo & David Jacho-Chavez, 2011. "Empirical Likelihood for Efficient Semiparametric Average Treatment Effects," Econometric Reviews, Taylor & Francis Journals, vol. 30(1), pages 1-24.
    4. Li, Qi & Racine, Jeffrey S., 2010. "Smooth Varying-Coefficient Estimation And Inference For Qualitative And Quantitative Data," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1607-1637, December.
    5. Eric P. Bettinger & Bridget Terry Long, 2009. "Addressing the Needs of Underprepared Students in Higher Education: Does College Remediation Work?," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    6. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, January.
    7. William B. Walstad & Ken Rebeck, 2008. "The Test of Understanding of College Economics," American Economic Review, American Economic Association, vol. 98(2), pages 547-551, May.
    8. Becker, William E. & Powers, John R., 2001. "Student performance, attrition, and class size given missing student data," Economics of Education Review, Elsevier, vol. 20(4), pages 377-388, August.
    9. Susan Pozo & Charles A. Stull, 2006. "Requiring a Math Skills Unit: Results of a Randomized Experiment," American Economic Review, American Economic Association, vol. 96(2), pages 437-441, May.
    10. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    11. Charles L. Ballard & Marianne F. Johnson, 2004. "Basic Math Skills and Performance in an Introductory Economics Class," The Journal of Economic Education, Taylor & Francis Journals, vol. 35(1), pages 3-23, January.
    12. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    13. Molly Espey, 1997. "Testing Math Competency in Introductory Economics," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 19(2), pages 484-491.
    14. Myoung-Jae Lee, 2004. "Selection correction and sensitivity analysis for ordered treatment effect on count response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(3), pages 323-337.
    15. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    16. Li, Qi & Racine, Jeffrey S. & Wooldridge, Jeffrey M., 2009. "Efficient Estimation of Average Treatment Effects with Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 206-223.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    2. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    5. Kyoo il Kim, 2019. "Efficiency of Average Treatment Effect Estimation When the True Propensity Is Parametric," Econometrics, MDPI, vol. 7(2), pages 1-13, May.
    6. Bryan S. Graham & Guido W. Imbens & Geert Ridder, 2020. "Identification and Efficiency Bounds for the Average Match Function Under Conditionally Exogenous Matching," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 303-316, April.
    7. Francesco Bravo & David Jacho-Chavez, 2011. "Empirical Likelihood for Efficient Semiparametric Average Treatment Effects," Econometric Reviews, Taylor & Francis Journals, vol. 30(1), pages 1-24.
    8. Biao Zhang, 2016. "Empirical Likelihood in Causal Inference," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 201-231, February.
    9. Maoyong Fan & Yanhong Jin, 2015. "The Supplemental Nutrition Assistance Program and Childhood Obesity in the United States: Evidence from the National Longitudinal Survey of Youth 1997," American Journal of Health Economics, MIT Press, vol. 1(4), pages 432-460, Fall.
    10. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    11. Andrew Chesher & Erich Battistin, 2004. "The Impact of Measurement Error on Evaluation Methods Based on Strong Ignorability," Econometric Society 2004 North American Summer Meetings 339, Econometric Society.
    12. Bernhard Schmidpeter, 2015. "The Fatal Consequences of Grief," CDL Aging, Health, Labor working papers 2015-07, The Christian Doppler (CD) Laboratory Aging, Health, and the Labor Market, Johannes Kepler University Linz, Austria.
    13. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    14. Yihui He & Fang Han, 2023. "On propensity score matching with a diverging number of matches," Papers 2310.14142, arXiv.org, revised Nov 2023.
    15. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.
    16. Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
    17. Dehejia Rajeev, 2015. "Experimental and Non-Experimental Methods in Development Economics: A Porous Dialectic," Journal of Globalization and Development, De Gruyter, vol. 6(1), pages 47-69, June.
    18. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    19. Fan, Yanqin & Shi, Xuetao & Tao, Jing, 2023. "Partial identification and inference in moment models with incomplete data," Journal of Econometrics, Elsevier, vol. 235(2), pages 418-443.
    20. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:amerec:v:60:y:2015:i:2:p:98-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://journals.sagepub.com/home/aex .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.