IDEAS home Printed from https://ideas.repec.org/a/rfa/aefjnl/v7y2020i3p55-69.html
   My bibliography  Save this article

Near Exact Calculation of American Options

Author

Listed:
  • Saied Simozar

Abstract

A new practical approach for the analysis of American (bond) options is developed which is a combination of the closed form solutions and binomial lattice models. The model is calibrated to the observed term structure of rates and traded volatilities and is arbitrage free. The convergence is very fast, but numerically intensive. By extrapolation the near exact premium of an American (bond) option can be calculated.

Suggested Citation

  • Saied Simozar, 2020. "Near Exact Calculation of American Options," Applied Economics and Finance, Redfame publishing, vol. 7(3), pages 55-69, May.
  • Handle: RePEc:rfa:aefjnl:v:7:y:2020:i:3:p:55-69
    as

    Download full text from publisher

    File URL: http://redfame.com/journal/index.php/aef/article/download/4681/4965
    Download Restriction: no

    File URL: http://redfame.com/journal/index.php/aef/article/view/4681
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dejun Xie, 2009. "Theoretical And Numerical Valuation Of Callable Bonds," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 3(2), pages 71-82.
    2. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    3. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    4. Sullivan, Michael A, 2000. "Valuing American Put Options Using Gaussian Quadrature," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 75-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    2. Maxim Ulrich & Lukas Zimmer & Constantin Merbecks, 2023. "Implied volatility surfaces: a comprehensive analysis using half a billion option prices," Review of Derivatives Research, Springer, vol. 26(2), pages 135-169, October.
    3. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    4. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    5. Guglielmo Maria Caporale & Mario Cerrato, 2008. "Chebyshev polynomial approximation to approximate partial differential equations," Working Papers 2008_16, Business School - Economics, University of Glasgow.
    6. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    7. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    8. Alghalith, Moawia, 2018. "Pricing the American options using the Black–Scholes pricing formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 443-445.
    9. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    10. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    11. Deswal, Komal & Kumar, Devendra, 2022. "Rannacher time-marching with orthogonal spline collocation method for retrieving the discontinuous behavior of hedging parameters," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    12. Doobae Jun & Hyejin Ku, 2013. "Valuation of American partial barrier options," Review of Derivatives Research, Springer, vol. 16(2), pages 167-191, July.
    13. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    14. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    15. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    17. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    18. Ludovic Mathys, 2019. "On Extensions of the Barone-Adesi & Whaley Method to Price American-Type Options," Papers 1912.00454, arXiv.org.
    19. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    20. Gordon G. Sollars & Sorin Tuluca, 2012. "The Optimal Timing of Strategic Action – A Real Options Approach," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 78-95.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfa:aefjnl:v:7:y:2020:i:3:p:55-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Redfame publishing (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.