IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1007187.html
   My bibliography  Save this article

Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics

Author

Listed:
  • Albin Fontaine
  • Sebastian Lequime
  • Isabelle Moltini-Conclois
  • Davy Jiolle
  • Isabelle Leparc-Goffart
  • Robert Charles Reiner Jr
  • Louis Lambrechts

Abstract

The kinetics of arthropod-borne virus (arbovirus) transmission by their vectors have long been recognized as a powerful determinant of arbovirus epidemiology. The time interval between virus acquisition and transmission by the vector, termed extrinsic incubation period (EIP), combines with vector mortality rate and vector competence to determine the proportion of infected vectors that eventually become infectious. However, the dynamic nature of this process, and the amount of natural variation in transmission kinetics among arbovirus strains, are poorly documented empirically and are rarely considered in epidemiological models. Here, we combine newly generated empirical measurements in vivo and outbreak simulations in silico to assess the epidemiological significance of genetic variation in dengue virus (DENV) transmission kinetics by Aedes aegypti mosquitoes. We found significant variation in the dynamics of systemic mosquito infection, a proxy for EIP, among eight field-derived DENV isolates representing the worldwide diversity of recently circulating type 1 strains. Using a stochastic agent-based model to compute time-dependent individual transmission probabilities, we predict that the observed variation in systemic mosquito infection kinetics may drive significant differences in the probability of dengue outbreak and the number of human infections. Our results demonstrate that infection dynamics in mosquitoes vary among wild-type DENV isolates and that this variation potentially affects the risk and magnitude of dengue outbreaks. Our quantitative assessment of DENV genetic variation in transmission kinetics contributes to improve our understanding of heterogeneities in arbovirus epidemiological dynamics.Author summary: Transmission of arboviruses by mosquitoes is a time-dependent process because dissemination of the virus from the insect’s digestive tract, where the infection is initially established, to the salivary glands, where it can be transmitted to the next host, typically takes several days. The duration of this time interval is an important determinant of the proportion of infected mosquitoes that live long enough to become infectious. Due to the lack of available data, epidemiological models rarely account for the dynamic nature of this process and its natural variation among arbovirus strains. In this study, we experimentally monitored the dynamics of mosquito infection by eight strains of dengue virus and found significant differences between them. In addition, we used the empirical data obtained in a simulation model to show that the differences observed among the strains are expected to result in human dengue outbreaks of different probability and size. Together, our results indicate that natural variation in mosquito infection dynamics between arbovirus strains may contribute to the unexplained heterogeneity of dengue virus transmission patterns.

Suggested Citation

  • Albin Fontaine & Sebastian Lequime & Isabelle Moltini-Conclois & Davy Jiolle & Isabelle Leparc-Goffart & Robert Charles Reiner Jr & Louis Lambrechts, 2018. "Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics," PLOS Pathogens, Public Library of Science, vol. 14(7), pages 1-21, July.
  • Handle: RePEc:plo:ppat00:1007187
    DOI: 10.1371/journal.ppat.1007187
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007187
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1007187&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1007187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wickham, Hadley, 2007. "Reshaping Data with the reshape Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i12).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustinus, Benno A. & Blum, Moshe & Citterio, Sandra & Gentili, Rodolfo & Helman, David & Nestel, David & Schaffner, Urs & Müller-Schärer, Heinz & Lensky, Itamar M., 2022. "Ground-truthing predictions of a demographic model driven by land surface temperatures with a weed biocontrol cage experiment," Ecological Modelling, Elsevier, vol. 466(C).
    2. Julio Cesar Alonso Cifuentes & Jaime Andres Carabali, 2019. "Breve Tuturial para visualizar y Calcular Métricas de Redes (grafos) en R (para Económisas)," Icesi Economics Lecture Notes 18170, Universidad Icesi.
    3. Miller, Christine M.F. & Waterhouse, Hannah & Harter, Thomas & Fadel, James G. & Meyer, Deanne, 2020. "Quantifying the uncertainty in nitrogen application and groundwater nitrate leaching in manure based cropping systems," Agricultural Systems, Elsevier, vol. 184(C).
    4. Sarlas, Georgios & Páez, Antonio & Axhausen, Kay W., 2020. "Betweenness-accessibility: Estimating impacts of accessibility on networks," Journal of Transport Geography, Elsevier, vol. 84(C).
    5. Marin FOTACHE & Florin DUMITRU & Valerica GREAVU-SERBAN, 2015. "An Information Systems Master Programme in Romania. Some Commonalities and Specificities," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 19(3), pages 5-18.
    6. Martijn Van Heel & Dinska Van Gucht & Koen Vanbrabant & Frank Baeyens, 2017. "The Importance of Conditioned Stimuli in Cigarette and E-Cigarette Craving Reduction by E-Cigarettes," IJERPH, MDPI, vol. 14(2), pages 1-18, February.
    7. Sean McKenzie & Hilary Parkinson & Jane Mangold & Mary Burrows & Selena Ahmed & Fabian Menalled, 2018. "Perceptions, Experiences, and Priorities Supporting Agroecosystem Management Decisions Differ among Agricultural Producers, Consultants, and Researchers," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    8. Milad Abbasiharofteh & Tom Broekel, 2021. "Still in the shadow of the wall? The case of the Berlin biotechnology cluster," Environment and Planning A, , vol. 53(1), pages 73-94, February.
    9. Jill F. Lundell & Brennan Bean & Jürgen Symanzik, 2023. "Let’s talk about the weather: a cluster-based approach to weather forecast accuracy," Computational Statistics, Springer, vol. 38(3), pages 1135-1155, September.
    10. Andee J. Kaplan & Eric R. Hare, 2019. "Putting down roots: a graphical exploration of community attachment," Computational Statistics, Springer, vol. 34(4), pages 1449-1464, December.
    11. Haider, Saira M. & Benscoter, Allison M. & Pearlstine, Leonard & D'Acunto, Laura E. & Romañach, Stephanie S., 2021. "Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach," Ecological Modelling, Elsevier, vol. 461(C).
    12. Fox, John & Carvalho, Marilia S., 2012. "The RcmdrPlugin.survival Package: Extending the R Commander Interface to Survival Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 49(i07).
    13. C. J. Torrecilla-Salinas & O. Troyer & M. J. Escalona & M. Mejías, 2019. "A Delphi-based expert judgment method applied to the validation of a mature Agile framework for Web development projects," Information Technology and Management, Springer, vol. 20(1), pages 9-40, March.
    14. Priyanga Dilini Talagala & Rob J Hyndman & Kate Smith-Miles & Sevvandi Kandanaarachchi & Mario A Munoz, 2018. "Anomaly detection in streaming nonstationary temporal data," Monash Econometrics and Business Statistics Working Papers 4/18, Monash University, Department of Econometrics and Business Statistics.
    15. Thelma Dede Baddoo & Zhijia Li & Yiqing Guan & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni, 2020. "Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions," IJERPH, MDPI, vol. 17(11), pages 1-26, June.
    16. Sólymos, Péter, 2009. "Processing Ecological Data in R with the mefa Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i08).
    17. Paul J McMurdie & Susan Holmes, 2014. "Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-12, April.
    18. Priscila Villalobos Perna & Mirko Di Febbraro & Maria Laura Carranza & Flavio Marzialetti & Michele Innangi, 2023. "Remote Sensing and Invasive Plants in Coastal Ecosystems: What We Know So Far and Future Prospects," Land, MDPI, vol. 12(2), pages 1-16, January.
    19. Bikram K. Das & Robiul Islam Rubel & Surbhi Gupta & Yajun Wu & Lin Wei & Volker S. Brözel, 2022. "Impacts of Biochar-Based Controlled-Release Nitrogen Fertilizers on Soil Prokaryotic and Fungal Communities," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    20. Stefan LINGNER & Eiko THIESSEN & Kerrin MÜLLER & Eberhard HARTUNG, 2018. "Dry Biomass Estimation of Hedge Banks: Allometric Equation vs. Structure from Motion via Unmanned Aerial Vehicle," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(4), pages 149-156.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1007187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.