IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i3d10.1007_s00180-023-01339-3.html
   My bibliography  Save this article

Let’s talk about the weather: a cluster-based approach to weather forecast accuracy

Author

Listed:
  • Jill F. Lundell

    (Department of Mathematics and Statistics Utah State University)

  • Brennan Bean

    (Department of Mathematics and Statistics Utah State University)

  • Jürgen Symanzik

    (Department of Mathematics and Statistics Utah State University)

Abstract

Improved understanding of characteristics related to weather forecast accuracy in the United States may help meteorologists develop more accurate predictions and may help Americans better interpret their daily weather forecasts. This article examines how spatio-temporal characteristics across the United States relate to forecast accuracy. We cluster the United States into six weather regions based on weather and geographic characteristics and analyze the patterns in forecast accuracy within each weather region. We then explore the relationship between climate characteristics and forecast accuracy within these weather regions. We conclude that patterns in forecast errors are closely related to the unique climates that characterize each region.

Suggested Citation

  • Jill F. Lundell & Brennan Bean & Jürgen Symanzik, 2023. "Let’s talk about the weather: a cluster-based approach to weather forecast accuracy," Computational Statistics, Springer, vol. 38(3), pages 1135-1155, September.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:3:d:10.1007_s00180-023-01339-3
    DOI: 10.1007/s00180-023-01339-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01339-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01339-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wickham, Hadley, 2007. "Reshaping Data with the reshape Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i12).
    2. Judah Cohen & Karl Pfeiffer & Jennifer A. Francis, 2018. "Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šárka Brodinová & Maia Zaharieva & Peter Filzmoser & Thomas Ortner & Christian Breiteneder, 2018. "Clustering of imbalanced high-dimensional media data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 261-284, June.
    2. Yongyang Cai & William Brock & Anastasios Xepapadeas & Kenneth Judd, 2018. "Climate Policy under Cooperation and Competition between Regions with Spatial Heat Transport," DEOS Working Papers 1806, Athens University of Economics and Business.
    3. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    4. Augustinus, Benno A. & Blum, Moshe & Citterio, Sandra & Gentili, Rodolfo & Helman, David & Nestel, David & Schaffner, Urs & Müller-Schärer, Heinz & Lensky, Itamar M., 2022. "Ground-truthing predictions of a demographic model driven by land surface temperatures with a weed biocontrol cage experiment," Ecological Modelling, Elsevier, vol. 466(C).
    5. Michael Rennings & Philipp Baaden & Carolin Block & Marcus John & Stefanie Bröring, 2024. "Assessing emerging sustainability-oriented technologies: the case of precision agriculture," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 2969-2998, June.
    6. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    7. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    8. Junliang Luo & Stefan Kitzler & Pietro Saggese, 2024. "Investigating Similarities Across Decentralized Financial (DeFi) Services," Papers 2404.00034, arXiv.org.
    9. Julio Cesar Alonso Cifuentes & Jaime Andres Carabali, 2019. "Breve Tuturial para visualizar y Calcular Métricas de Redes (grafos) en R (para Económisas)," Icesi Economics Lecture Notes 18170, Universidad Icesi.
    10. Hyeri Choi & Min Jae Park, 2019. "Evaluating the Efficiency of Governmental Excellence for Social Progress: Focusing on Low- and Lower-Middle-Income Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 111-130, January.
    11. Lbath, Hanâ & Petersen, Alexander & Meiring, Wendy & Achard, Sophie, 2024. "Clustering-based inter-regional correlation estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    12. repec:plo:pone00:0061217 is not listed on IDEAS
    13. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    14. repec:ers:journl:v:xxiv:y:2021:i:3:p:934-948 is not listed on IDEAS
    15. repec:plo:pone00:0178783 is not listed on IDEAS
    16. Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
    17. Lin, Jianing & Bao, Minglei & Liang, Ziyang & Sang, Maosheng & Ding, Yi, 2022. "Spatio-temporal evaluation of electricity price risk considering multiple uncertainties under extreme cold weather," Applied Energy, Elsevier, vol. 328(C).
    18. Giger, Markus & Mutea, Emily & Kiteme, Boniface & Eckert, Sandra & Anseeuw, Ward & Zaehringer, Julie G., 2020. "Large agricultural investments in Kenya’s Nanyuki Area: Inventory and analysis of business models," Land Use Policy, Elsevier, vol. 99(C).
    19. Alexandra-Andreea Mironescu & Grigorescu Ioana Gabriela & Iordache Ana Maria Mihaela, 2023. "Using Data Analysis Techniques To Classify Counties From Romania In Terms Of Education, According To Indexes From Economic And Social Fields," Romanian Economic Business Review, Romanian-American University, vol. 18(1), pages 15-33, March.
    20. Kluge, Ulrike & Ringbeck, Jürgen & Spinler, Stefan, 2020. "Door-to-door travel in 2035 – A Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    21. Lisa Reyes Mason & Bonita B. Sharma & Jayme E. Walters & Christine C. Ekenga, 2020. "Mental Health and Weather Extremes in a Southeastern U.S. City: Exploring Group Differences by Race," IJERPH, MDPI, vol. 17(10), pages 1-18, May.
    22. Walker, Nathan L. & Styles, David & Coughlan, Paul & Williams, A. Prysor, 2022. "Cross-sector sustainability benchmarking of major utilities in the United Kingdom," Utilities Policy, Elsevier, vol. 78(C).
    23. Kateřina Duspivová, 2019. "Produktivita práce a odměňování v duální ekonomice: role zahraničních investic v České republice [Labour Productivity and Remuneration in a Dual Economy: The Role of Foreign Investment in the Czech," Politická ekonomie, Prague University of Economics and Business, vol. 2019(5), pages 511-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:3:d:10.1007_s00180-023-01339-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.