IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0327016.html
   My bibliography  Save this article

Planning trajectory for UAVs using the self-organizing migrating algorithm

Author

Listed:
  • Quoc Bao Diep
  • Thanh-Cong Truong
  • Ivan Zelinka

Abstract

Ensuring efficient and safe trajectory planning for UAVs in complex and dynamic environments is a critical challenge, especially for UAVs that are increasingly deployed in applications like environmental monitoring, disaster management, and surveillance. The primary complications in the safe control of UAVs include real-time obstacle avoidance, adaptation to unpredictable environmental changes, and coordination among multiple UAVs to prevent collisions. This paper addresses these challenges by proposing a novel approach for UAV trajectory planning that integrates obstacle avoidance and target acquisition. We introduce a new cost function designed to minimize the distance to the target while maximizing the distance from obstacles, effectively balancing these competing objectives to ensure safety and efficiency. To optimize this cost function, we employ the self-organizing migrating algorithm, a swarm intelligence algorithm inspired by the cooperative and competitive behaviors observed in natural organisms. Our method enables UAVs to autonomously generate safe and efficient paths in real-time, adapt to dynamic changes, and scale to large swarms without relying on centralized control. Simulation results across three scenarios-including a complex environment with ten UAVs and multiple obstacles-demonstrate the effectiveness of our approach. The UAVs successfully reach their targets while avoiding collisions, confirming the reliability and robustness of the proposed method. This work contributes to advancing autonomous UAV operations by providing a scalable and adaptable solution for trajectory planning in challenging environments.

Suggested Citation

  • Quoc Bao Diep & Thanh-Cong Truong & Ivan Zelinka, 2025. "Planning trajectory for UAVs using the self-organizing migrating algorithm," PLOS ONE, Public Library of Science, vol. 20(7), pages 1-23, July.
  • Handle: RePEc:plo:pone00:0327016
    DOI: 10.1371/journal.pone.0327016
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327016
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0327016&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0327016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lianhai Lin & Zhigang Wang & Liqin Tian & Junyi Wu & Wenxing Wu, 2024. "A PSO-based energy-efficient data collection optimization algorithm for UAV mission planning," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-24, January.
    2. Smith, Angela & Dickinson, Janet E. & Marsden, Greg & Cherrett, Tom & Oakey, Andrew & Grote, Matt, 2022. "Public acceptance of the use of drones for logistics: The state of play and moving towards more informed debate," Technology in Society, Elsevier, vol. 68(C).
    3. Mohd Nadhir Ab Wahab & Samia Nefti-Meziani & Adham Atyabi, 2015. "A Comprehensive Review of Swarm Optimization Algorithms," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-36, May.
    4. Shengbin Liang & Tongtong Jiao & Wencai Du & Shenming Qu, 2021. "An improved ant colony optimization algorithm based on context for tourism route planning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabino, Hullysses & Almeida, Rodrigo V.S. & Moraes, Lucas Baptista de & Silva, Walber Paschoal da & Guerra, Raphael & Malcher, Carlos & Passos, Diego & Passos, Fernanda G.O., 2022. "A systematic literature review on the main factors for public acceptance of drones," Technology in Society, Elsevier, vol. 71(C).
    2. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).
    3. Youmiao Wang & Rui Song & Ziqi Zhao & Rixin Zhao & Zheming Zhang, 2024. "A multimodal material route planning problem considering key processes at work zones," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-26, June.
    4. Sangeeta & Kapil Sharma & Manju Bala, 2020. "An ecological space based hybrid swarm-evolutionary algorithm for software reliability model parameter estimation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 77-92, February.
    5. Hormozi, Elham & Hu, Shuwen & Ding, Zhe & Tian, Yu-Chu & Wang, You-Gan & Yu, Zu-Guo & Zhang, Weizhe, 2022. "Energy-efficient virtual machine placement in data centres via an accelerated Genetic Algorithm with improved fitness computation," Energy, Elsevier, vol. 252(C).
    6. Minfang Huang & Qiong Guo & Jing Liu & Xiaoxu Huang, 2018. "Mixed Model Assembly Line Scheduling Approach to Order Picking Problem in Online Supermarkets," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    7. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    8. Himansu Das & Sanjay Prajapati & Mahendra Kumar Gourisaria & Radha Mohan Pattanayak & Abdalla Alameen & Manjur Kolhar, 2023. "Feature Selection Using Golden Jackal Optimization for Software Fault Prediction," Mathematics, MDPI, vol. 11(11), pages 1-28, May.
    9. Kharkeshi, Behrad Alizadeh & Shafaghat, Rouzbeh & Jahanian, Omid & Alamian, Rezvan & Rezanejad, Kourosh, 2022. "Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm," Energy, Elsevier, vol. 260(C).
    10. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    11. Mustafa Erkan Turan, 2016. "Fuzzy Systems Tuned By Swarm Based Optimization Algorithms for Predicting Stream flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4345-4362, September.
    12. Afroz Alam & Preeti Verma & Mohd Tariq & Adil Sarwar & Basem Alamri & Noore Zahra & Shabana Urooj, 2021. "Jellyfish Search Optimization Algorithm for MPP Tracking of PV System," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    13. Wang, Renkang & Li, Kai & Ming, Yuan & Guo, Wenjun & Deng, Bo & Tang, Hao, 2024. "An enhanced salp swarm algorithm with chaotic mapping and dynamic learning for optimizing purge process of proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 308(C).
    14. Jian Kong & Jinsong Li & Peng Li, 2024. "Optimization of chaotic light output in semiconductor laser systems based on multi-objective optimization algorithm," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-23, April.
    15. Mohammad Javad Amoshahy & Mousa Shamsi & Mohammad Hossein Sedaaghi, 2016. "A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-42, August.
    16. Rehan Ali Khan & Shiyou Yang & Shafiullah Khan & Shah Fahad & Kalimullah, 2021. "A Multimodal Improved Particle Swarm Optimization for High Dimensional Problems in Electromagnetic Devices," Energies, MDPI, vol. 14(24), pages 1-19, December.
    17. Conor Wall & Dylan Powell & Fraser Young & Aaron J Zynda & Sam Stuart & Tracey Covassin & Alan Godfrey, 2022. "A deep learning-based approach to diagnose mild traumatic brain injury using audio classification," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-15, September.
    18. Shafiq Ahmad, 2022. "Electromagnetic Field Optimization Based Selective Harmonic Elimination in a Cascaded Symmetric H-Bridge Inverter," Energies, MDPI, vol. 15(20), pages 1-18, October.
    19. Wu, Yuqiang & Liao, Shengli & Liu, Benxi & Cheng, Chuntian & Zhao, Hongye & Fang, Zhou & Lu, Jia, 2024. "Short-term load distribution model for cascade giant hydropower stations with complex hydraulic and electrical connections," Renewable Energy, Elsevier, vol. 232(C).
    20. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.