IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300036.html
   My bibliography  Save this article

A multimodal material route planning problem considering key processes at work zones

Author

Listed:
  • Youmiao Wang
  • Rui Song
  • Ziqi Zhao
  • Rixin Zhao
  • Zheming Zhang

Abstract

With the continuous development of large-scale engineering projects such as construction projects, relief support, and large-scale relocation in various countries, engineering logistics has attracted much attention. This paper addresses a multimodal material route planning problem (MMRPP), which considers the transportation of engineering material from suppliers to the work zones using multiple transport modes. Due to the overall relevance and technical complexity of engineering logistics, we introduce the key processes at work zones to generate a transport solution, which is more realistic for various real-life applications. We propose a multi-objective multimodal transport route planning model that minimizes the total transport cost and the total transport time. The model by using the ε − constraint method that transforms the objective function of minimizing total transportation cost into a constraint, resulting in obtaining pareto optimal solutions. This method makes up for the lack of existing research on the combination of both engineering logistics and multimodal transportation, after which the feasibility of the model and algorithm is verified by examples. The results show that the model solution with the introduction of the key processes at work zones produces more time-efficient and less time-consuming route planning results, and that the results obtained using the ε − constraint method are more reliable than the traditional methods for solving multi-objective planning problems and are more in line with the decision maker’s needs.

Suggested Citation

  • Youmiao Wang & Rui Song & Ziqi Zhao & Rixin Zhao & Zheming Zhang, 2024. "A multimodal material route planning problem considering key processes at work zones," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-26, June.
  • Handle: RePEc:plo:pone00:0300036
    DOI: 10.1371/journal.pone.0300036
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300036
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300036&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shengbin Liang & Tongtong Jiao & Wencai Du & Shenming Qu, 2021. "An improved ant colony optimization algorithm based on context for tourism route planning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-16, September.
    2. Daughety,Andrew F. (ed.), 2008. "Analytical Studies in Transport Economics," Cambridge Books, Cambridge University Press, number 9780521070874, June.
    3. Lin Li & Qiangwei Zhang & Tie Zhang & Yanbiao Zou & Xing Zhao, 2023. "Optimum Route and Transport Mode Selection of Multimodal Transport with Time Window under Uncertain Conditions," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
    4. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Qian Pei & Li Wang & Peng Du & Zhaolan Wang, 2022. "Optimization of tourism routes in Lushunkou District based on ArcGIS," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuya Zhang & Yue Wang & Dongqing Zhang, 2024. "Location-Routing Optimization for Two-Echelon Cold Chain Logistics of Front Warehouses Based on a Hybrid Ant Colony Algorithm," Mathematics, MDPI, vol. 12(12), pages 1-22, June.
    2. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Li, Bokang & Afkhami, Payam & Khayamim, Razieh & Elmi, Zeinab & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2024. "A holistic optimization-based approach for sustainable selection of level crossings for closure with safety, economic, and environmental considerations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Dini, Niloofar & Yaghoubi, Saeed & Bahrami, Hamideh, 2025. "Logistics Performance Index-driven in operational planning for logistics companies: A smart transportation approach," Transport Policy, Elsevier, vol. 160(C), pages 42-62.
    5. Zhang, Yimeng & Tan, Xiangrong & Gan, Mi & Liu, Xiaobo & Atasoy, Bilge, 2025. "Operational synchromodal transport planning methodologies: Review and roadmap," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    6. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Caiyi Wu & Yinggui Zhang & Yang Xiao & Weiwei Mo & Yuxie Xiao & Juan Wang, 2024. "Optimization of Multimodal Paths for Oversize and Heavyweight Cargo under Different Carbon Pricing Policies," Sustainability, MDPI, vol. 16(15), pages 1-23, August.
    8. Zhongyan Xu & Changjiang Zheng & Shukang Zheng & Genghua Ma & Zhichao Chen, 2024. "Multimodal Transportation Route Optimization of Emergency Supplies Under Uncertain Conditions," Sustainability, MDPI, vol. 16(24), pages 1-26, December.
    9. Sk. A. Shezan & Innocent Kamwa & Md. Fatin Ishraque & S. M. Muyeen & Kazi Nazmul Hasan & R. Saidur & Syed Muhammad Rizvi & Md Shafiullah & Fahad A. Al-Sulaiman, 2023. "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    10. Pei Zhu & Xiaolong Lv & Quan Shao & Caijin Kuang & Weiwang Chen, 2024. "Optimization of Green Multimodal Transport Schemes Considering Order Consolidation under Uncertainty Conditions," Sustainability, MDPI, vol. 16(15), pages 1-29, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.