IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0321530.html
   My bibliography  Save this article

Accurate total consumer price index forecasting with data augmentation, multivariate features, and sentiment analysis: A case study in Korea

Author

Listed:
  • Injae Seo
  • Minkyoung Kim
  • Jong Wook Kim
  • Beakcheol Jang

Abstract

The Consumer Price Index (CPI) is a key economic indicator used by policymakers worldwide to monitor inflation and guide monetary policy decisions. In Korea, the CPI significantly impacts decisions on interest rates, fiscal policy frameworks, and the Bank of Korea’s strategies for economic stability. Given its importance, accurately forecasting the Total CPI is crucial for informed decision-making. Achieving accurate estimation, however, presents several challenges. First, the Korean Total CPI is calculated as a weighted sum of 462 items grouped into 12 categories of goods and services. This heterogeneity makes it difficult to account for all variations in consumer behavior and price dynamics. Second, the monthly frequency of CPI data results in a relatively sparse time series, limiting the performance of the analysis. Furthermore, external factors such as policy changes and pandemics add further volatility to the CPI. To address these challenges, we propose a novel framework consisting of four key components: (1) a hybrid Convolutional Neural Network-Long Short-Term Memory mechanism designed to capture complex patterns in CPI data, enhancing estimation accuracy; (2) multivariate inputs that incorporate CPI component indices alongside auxiliary variables for richer contextual information; (3) data augmentation through linear interpolation to convert monthly data into daily data, optimizing it for highly parametrized deep learning models; and (4) sentiment index derived from Korean CPI-related news articles, providing insights into external factors influencing CPI fluctuations. Experimental results demonstrate that the proposed model outperforms existing approaches in CPI prediction, as evidenced by lower RMSE values. This improved accuracy has the potential to support the development of more timely and effective economic policies.

Suggested Citation

  • Injae Seo & Minkyoung Kim & Jong Wook Kim & Beakcheol Jang, 2025. "Accurate total consumer price index forecasting with data augmentation, multivariate features, and sentiment analysis: A case study in Korea," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-28, May.
  • Handle: RePEc:plo:pone00:0321530
    DOI: 10.1371/journal.pone.0321530
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321530
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0321530&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0321530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    2. W. Erwin Diewert & Kevin J. Fox, 2020. "Measuring Real Consumption and CPI Bias under Lockdown Conditions," NBER Working Papers 27144, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    2. Dubois, Loick & Sahuc, Jean-Guillaume & Vermandel, Gauthier, 2025. "A general equilibrium approach to carbon permit banking," Journal of Environmental Economics and Management, Elsevier, vol. 129(C).
    3. Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
    4. Jérôme Héricourt & Iuliana Matei, 2007. "Transmission de la politique monétaire dans les pays d'E urope centrale et orientale : que savons-nous vraiment ?," Economie & Prévision, La Documentation Française, vol. 0(4), pages 221-238.
    5. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    6. Sun, Hang & Bos, Jaap W.B. & Li, Zhuo, 2017. "In the Nick of Time: A Heteroskedastic SVAR Model and Its Application to the Crude Oil Futures Market," Research Memorandum 019, Maastricht University, Graduate School of Business and Economics (GSBE).
    7. Barnett, William A. & Su, Liting, 2017. "Data sources for the credit-card augmented Divisia monetary aggregates," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 899-910.
    8. Christian Schoder, 2014. "The fundamentals of sovereign debt sustainability: evidence from 15 OECD countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(2), pages 247-271, May.
    9. Fabio Pammolli & Francesco Porcelli & Francesco Vidoli & Monica Auteri & Guido Borà, 2017. "La spesa sanitaria delle Regioni in Italia - Saniregio2017," Working Papers CERM 01-2017, Competitività, Regole, Mercati (CERM).
    10. Sakkarin Nonthapot & Tanawat Watchalaanun, 2023. "Effects of Deglobalization on Food and Energy Insecurity in the GMS Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 374-381, September.
    11. Elstner, Steffen & Grimme, Christian & Kecht, Valentin & Lehmann, Robert, 2022. "The diffusion of technological progress in ICT," European Economic Review, Elsevier, vol. 149(C).
    12. Budnik, Katarzyna & Bochmann, Paul, 2017. "Capital and liquidity buffers and the resilience of the banking system in the euro area," Working Paper Series 2120, European Central Bank.
    13. Tommaso Proietti, 2008. "Estimation of Common Factors Under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and Its Main Components," Springer Books, in: Paula Brito (ed.), Compstat 2008, pages 547-558, Springer.
    14. Carlos Cañizares Martínez & Arne Gieseck, 2025. "The effects of macro uncertainty shocks in the euro area: a FAVAR approach," Empirical Economics, Springer, vol. 68(6), pages 2829-2872, June.
    15. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    16. Muñoz, Sònia, 2004. "Real effects of regional house prices: dynamic panel estimation with heterogeneity," LSE Research Online Documents on Economics 24704, London School of Economics and Political Science, LSE Library.
    17. Yusifzada, Tural, 2022. "Response of Inflation to the Climate Stress: Evidence from Azerbaijan," MPRA Paper 116522, University Library of Munich, Germany, revised 20 Sep 2022.
    18. Jennifer Peña & Elvira Prades, 2021. "Price setting in Chile: Micro evidence from consumer on-line prices during the social outbreak and Covid-19," Working Papers 2112, Banco de España.
    19. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    20. Kim Abildgren, 2016. "A century of macro-financial linkages," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 8(4), pages 458-471, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.