IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0314014.html
   My bibliography  Save this article

A novel family of beta mixture models for the differential analysis of DNA methylation data: An application to prostate cancer

Author

Listed:
  • Koyel Majumdar
  • Romina Silva
  • Antoinette Sabrina Perry
  • Ronald William Watson
  • Andrea Rau
  • Florence Jaffrezic
  • Thomas Brendan Murphy
  • Isobel Claire Gormley

Abstract

Identifying differentially methylated cytosine-guanine dinucleotide (CpG) sites between benign and tumour samples can assist in understanding disease. However, differential analysis of bounded DNA methylation data often requires data transformation, reducing biological interpretability. To address this, a family of beta mixture models (BMMs) is proposed that (i) objectively infers methylation state thresholds and (ii) identifies differentially methylated CpG sites (DMCs) given untransformed, beta-valued methylation data. The BMMs achieve this through model-based clustering of CpG sites and by employing parameter constraints, facilitating application to different study settings. Inference proceeds via an expectation-maximisation algorithm, with an approximate maximization step providing tractability and computational feasibility. Performance of the BMMs is assessed through thorough simulation studies, and the BMMs are used for differential analyses of DNA methylation data from a prostate cancer study. Intuitive and biologically interpretable methylation state thresholds are inferred and DMCs are identified, including those related to genes such as GSTP1, RASSF1 and RARB, known for their role in prostate cancer development. Gene ontology analysis of the DMCs revealed significant enrichment in cancer-related pathways, demonstrating the utility of BMMs to reveal biologically relevant insights. An R package betaclust facilitates widespread use of BMMs.

Suggested Citation

  • Koyel Majumdar & Romina Silva & Antoinette Sabrina Perry & Ronald William Watson & Andrea Rau & Florence Jaffrezic & Thomas Brendan Murphy & Isobel Claire Gormley, 2024. "A novel family of beta mixture models for the differential analysis of DNA methylation data: An application to prostate cancer," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-21, December.
  • Handle: RePEc:plo:pone00:0314014
    DOI: 10.1371/journal.pone.0314014
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314014
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314014&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0314014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konstantin Schildknecht & Sven Olek & Thorsten Dickhaus, 2015. "Simultaneous Statistical Inference for Epigenetic Data," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    2. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    2. Capps, Oral Jr. & Havlicek, Joseph Jr., 1980. "National And Regional Household Demands For Meats And Seafood In The U.S.: A Complete Systems Approach," 1980 Annual Meeting, July 27-30, Urbana-Champaign, Illinois 278409, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Delis, Manthos & Savva, Christos & Theodossiou, Panayiotis, 2020. "A Coronavirus Asset Pricing Model: The Role of Skewness," MPRA Paper 100877, University Library of Munich, Germany.
    4. Faruk, Balli, 2006. "New Patterns in International Portfolio Allocation and Income Smoothing," MPRA Paper 10121, University Library of Munich, Germany, revised 14 Aug 2008.
    5. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    6. Weber, Enzo, 2009. "Financial Contagion, Vulnerability and Information Flow: Empirical Identification," University of Regensburg Working Papers in Business, Economics and Management Information Systems 431, University of Regensburg, Department of Economics.
    7. Shanker, Latha & Balakrishnan, Narayanaswamy, 2005. "Optimal clearing margin, capital and price limits for futures clearinghouses," Journal of Banking & Finance, Elsevier, vol. 29(7), pages 1611-1630, July.
    8. Emilie Alberola & Benoît Chèze & Julien Chevallier, 2008. "The EU Emissions Trading Scheme : Disentangling the Effects of Industrial Production and CO2 Emissions on Carbon Prices," EconomiX Working Papers 2008-12, University of Paris Nanterre, EconomiX.
    9. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    10. Tony Caporale & Barbara McKiernan, 1998. "The Fischer Black Hypothesis: Some Time‐Series Evidence," Southern Economic Journal, John Wiley & Sons, vol. 64(3), pages 765-771, January.
    11. Ahmed, Walid M.A., 2018. "On the interdependence of natural gas and stock markets under structural breaks," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 149-161.
    12. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    13. Charles K.D. Adjasi, 2009. "Macroeconomic uncertainty and conditional stock-price volatility in frontier African markets: Evidence from Ghana," Journal of Risk Finance, Emerald Group Publishing, vol. 10(4), pages 333-349, August.
    14. Kenneth Beller & John R. Nofsinger, 1998. "On Stock Return Seasonality And Conditional Heteroskedasticity," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 21(2), pages 229-246, June.
    15. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    16. Ram Bhar & Carl Chiarella, 1995. "The Estimation of the Heath-Jarrow-Morton Model by Use of Kalman Filtering Techniques," Working Paper Series 54, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    17. Abraham, Katharine G & Farber, Henry S, 1987. "Job Duration, Seniority, and Earnings," American Economic Review, American Economic Association, vol. 77(3), pages 278-297, June.
    18. Mübariz Hasanov & Tolga Omay, 2011. "The Relationship Between Inflation, Output Growth, and Their Uncertainties: Evidence from Selected CEE Countries," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(0), pages 5-20, July.
    19. repec:zbw:rwirep:0243 is not listed on IDEAS
    20. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    21. Ballocchi, Giuseppe & Dacorogna, Michel M. & Hopman, Carl M. & Muller, Ulrich A. & Olsen, Richard B., 1999. "The intraday multivariate structure of the Eurofutures markets," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 479-513, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.