IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0312863.html
   My bibliography  Save this article

Comparing random walks in graph embedding and link prediction

Author

Listed:
  • Adilson Vital Jr.
  • Filipi Nascimento Silva
  • Diego Raphael Amancio

Abstract

Random walks find extensive applications across various complex network domains, including embedding generation and link prediction. Despite the widespread utilization of random walks, the precise impact of distinct biases on embedding generation from sequence data and their subsequent effects on link prediction remain elusive. We conduct a comparative analysis of several random walk strategies, including the true self-avoiding random walk and the traditional random walk. We also analyze walks biased towards node degree and those with inverse node degree bias. Diverse adaptations of the node2vec algorithm to induce distinct exploratory behaviors were also investigated. Our empirical findings demonstrate that despite the varied behaviors inherent in these embeddings, only slight performance differences manifest in the context of link prediction. This implies the resilient recovery of network structure, regardless of the specific walk heuristic employed to traverse the network. Consequently, the results suggest that data generated from sequences governed by unknown mechanisms can be successfully reconstructed.

Suggested Citation

  • Adilson Vital Jr. & Filipi Nascimento Silva & Diego Raphael Amancio, 2024. "Comparing random walks in graph embedding and link prediction," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-22, November.
  • Handle: RePEc:plo:pone00:0312863
    DOI: 10.1371/journal.pone.0312863
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312863
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0312863&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0312863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Pierre Barthelemy & Jacopo Bertolotti & Diederik S. Wiersma, 2008. "A Lévy flight for light," Nature, Nature, vol. 453(7194), pages 495-498, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    4. Marcin Pitera & Aleksei Chechkin & Agnieszka Wyłomańska, 2022. "Goodness-of-fit test for $$\alpha$$ α -stable distribution based on the quantile conditional variance statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 387-424, June.
    5. Iomin, Alexander, 2023. "Fractional Floquet theory," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Kewin Pączek & Damian Jelito & Marcin Pitera & Agnieszka Wyłomańska, 2024. "Estimation of stability index for symmetric $$\alpha $$ α -stable distribution using quantile conditional variance ratios," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 297-334, March.
    7. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    8. Lu, Yikang & de Miguel-Arribas, Alfonso & Shi, Lei, 2025. "Influence of social peers on vaccine hesitancy under imperfect vaccination," Applied Mathematics and Computation, Elsevier, vol. 491(C).
    9. Deng, Yunsheng & Zhang, Jihui, 2021. "Memory-based prisoner's dilemma game with history optimal strategy learning promotes cooperation on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    10. Pan, Jeng-Shyang & Zhang, Zhen & Chu, Shu-Chuan & Zhang, Si-Qi & Wu, Jimmy Ming-Tai, 2024. "A parallel compact Marine Predators Algorithm applied in time series prediction of Backpropagation neural network (BNN) and engineering optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 65-88.
    11. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    12. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Jiakuan Chen & Haoyu Wen, 2023. "The application of complex network theory for resilience improvement of knowledge-intensive supply chains," Operations Management Research, Springer, vol. 16(3), pages 1140-1161, September.
    14. Liu, Chuang & Zhou, Nan & Zhan, Xiu-Xiu & Sun, Gui-Quan & Zhang, Zi-Ke, 2020. "Markov-based solution for information diffusion on adaptive social networks," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    15. Zuo, Chao & Ling, Yuting & Zhu, Fenping & Ma, Xinyu & Xiang, Guochun, 2023. "Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    16. Xia, Yang & Jiang, Haijun & Mei, Xuehui & Li, Jiarong & Yu, Shuzhen, 2024. "Dynamical analysis of a stochastic Hyper-INPR competitive information propagation model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    17. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    19. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    20. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.