IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310539.html
   My bibliography  Save this article

Information sharing and channel encroachment in biomass supply chains

Author

Listed:
  • Xin Wu
  • Peng Liu
  • Jin Li
  • Jing Gao
  • Guangyin Xu

Abstract

To guarantee the sustainable development of the biomass raw material supply chain, researchers are increasingly focusing on the issue of information asymmetry between biomass power plants and upstream supply chain members. This paper investigates the optimal information sharing strategy for a biomass power plant where farmers choose whether to encroach on the biomass feedstock supply. Using a game theory model, we analyze eight different information sharing scenarios, and the results show that when the encroachment occurs in supply chain channels, information sharing can significantly increase the profits of the entire supply chain. In this case, the power plant should share its demand information with all upstream players to promote the overall benefit of the supply chain. In contrast, when the power plant shares its information only with the middleman, it can maximize its profits, which, however, may not be conducive to the long-term stability of the supply chain. Furthermore, surprisingly, in the absence of channel encroachment, the power plant sharing information with upstream members may harm their profits. This suggests that power plants may need to consider the scope of information sharing more carefully when the farmers choose not to encroach. Finally, we also examine the impact of channel competition intensity on information sharing strategies, and find that when channel competition intensity is low, transparent demand information helps the power plant maximize expected returns. However, in a highly competitive market environment, the power plant should carefully handle information sharing with farmers to avoid damaging their profits.

Suggested Citation

  • Xin Wu & Peng Liu & Jin Li & Jing Gao & Guangyin Xu, 2024. "Information sharing and channel encroachment in biomass supply chains," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-22, September.
  • Handle: RePEc:plo:pone00:0310539
    DOI: 10.1371/journal.pone.0310539
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310539
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310539&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Henny Romijn & Sanne Heijnen & Jouke Rom Colthoff & Boris De Jong & Janske Van Eijck, 2014. "Economic and Social Sustainability Performance of Jatropha Projects: Results from Field Surveys in Mozambique, Tanzania and Mali," Sustainability, MDPI, vol. 6(9), pages 1-33, September.
    2. Lingling Wang & Tsunemi Watanabe, 2016. "A Stackelberg Game Theoretic Analysis of Incentive Effects under Perceived Risk for China’s Straw-Based Power Plant Supply Chain," Energies, MDPI, vol. 9(6), pages 1-20, June.
    3. Pérez-Fortes, Mar & Laínez-Aguirre, José Miguel & Arranz-Piera, Pol & Velo, Enrique & Puigjaner, Luis, 2012. "Design of regional and sustainable bio-based networks for electricity generation using a multi-objective MILP approach," Energy, Elsevier, vol. 44(1), pages 79-95.
    4. Enrique Holgado de Frutos & Juan R Trapero & Francisco Ramos, 2020. "A literature review on operational decisions applied to collaborative supply chains," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-28, March.
    5. Meng Liu & Luyu Zhai & Hongcheng Gan, 2024. "An evolutionary analysis of supply chain collaborative information sharing based on prospect theory," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-20, March.
    6. Cooper, Nathanial & Panteli, Anna & Shah, Nilay, 2019. "Linear estimators of biomass yield maps for improved biomass supply chain optimisation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Kaiyan Luo & Xingping Zhang & Qinliang Tan, 2018. "A Co-Opetition Straw Supply Strategy Integrating Rural Official Organizations and Farmers’ Behavior in China," Energies, MDPI, vol. 11(10), pages 1-17, October.
    8. Zemo, Kahsay Haile & Termansen, Mette, 2018. "Farmers’ willingness to participate in collective biogas investment: A discrete choice experiment study," Resource and Energy Economics, Elsevier, vol. 52(C), pages 87-101.
    9. Shabani, Nazanin & Sowlati, Taraneh, 2013. "A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant," Applied Energy, Elsevier, vol. 104(C), pages 353-361.
    10. Gökhan Memişoğlu & Halit Üster, 2016. "Integrated Bioenergy Supply Chain Network Planning Problem," Transportation Science, INFORMS, vol. 50(1), pages 35-56, February.
    11. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    12. Peng Liu & Rong Zhang & Bin Liu, 2023. "Information sharing under agency selling in an e-commerce supply chain with competing OEMs," Operational Research, Springer, vol. 23(3), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhanwu & Wang, Zhenfeng & Tahir, Nadeem & Wang, Heng & Li, Jin & Xu, Guangyin, 2020. "Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive," Energy Policy, Elsevier, vol. 146(C).
    2. Kaiyan Luo & Xingping Zhang & Qinliang Tan, 2018. "A Co-Opetition Straw Supply Strategy Integrating Rural Official Organizations and Farmers’ Behavior in China," Energies, MDPI, vol. 11(10), pages 1-17, October.
    3. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    4. Juanjuan Wu & Jian Zhang & Weiming Yi & Hongzhen Cai & Yang Li & Zhanpeng Su, 2021. "A Game-Theoretic Analysis of Incentive Effects for Agribiomass Power Generation Supply Chain in China," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    7. Richmond Antwi-Bediako & Kei Otsuki & Annelies Zoomers & Aklilu Amsalu, 2019. "Global Investment Failures and Transformations: A Review of Hyped Jatropha Spaces," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Yuan, Jiahang & Luo, Xinggang & Ding, Xianghai & Liu, Chunlai & Li, Cunbin, 2019. "Biomass power generation fuel procurement and storage modes evaluation: A case study in Jilin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 75-86.
    10. Saeedeh Anvari & Metin Turkay, 2017. "The facility location problem from the perspective of triple bottom line accounting of sustainability," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6266-6287, November.
    11. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    12. Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
    13. Dorothée Boccanfuso & Massa Coulibaly & Luc Savard & Govinda Timilsina, 2018. "Macroeconomic and Distributional Impacts of Jatropha Based Biodiesel in Mali," Economies, MDPI, vol. 6(4), pages 1-22, November.
    14. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    15. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    16. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    17. Graham von Maltitz, 2017. "Options for suitable biofuel farming: Experience from Southern Africa," WIDER Working Paper Series wp-2017-100, World Institute for Development Economic Research (UNU-WIDER).
    18. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    19. Zygmunt Stanula & Marek Wieruszewski & Adam Zydroń & Krzysztof Adamowicz, 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review," Energies, MDPI, vol. 16(24), pages 1-17, December.
    20. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.