IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0309734.html
   My bibliography  Save this article

Solar radiation model and optimization of asymmetric large-span externally insulated plastic greenhouses

Author

Listed:
  • Chuanqing Wang
  • Kai Liu
  • Hongyu Ma
  • Tianhua Li
  • Shaojie Wang
  • Dalong Zhang
  • Min Wei

Abstract

To improve the light environment of asymmetric large-span externally insulated plastic greenhouses, a solar radiation model that considers the projection path equations of the insulation quilts and validated the model was established. The model was employed to investigate the impact of different heights, spans, and north lighting projection lengths on the greenhouses’ light environment. The results revealed that ground radiation interception, a key component of winter lighting, was most influenced by height, followed by span, and least influenced by the projection length of the north lighting roof. Additionally, ground radiation spatial uniformity was most affected by height, followed by the projection length of the north lighting roof, and least influenced by span. The optimization objectives for solar radiation were set to maximize solar radiation interception and minimize the coefficient of variation. The optimal structural parameters for the asymmetric large-span externally insulated plastic greenhouse were determined using the NSGA-II method and the entropy weight-TOPSIS method: the height of 6.97 m, and the projection length of north lighting roof is 7.44 m for a greenhouse with a span of 20.00 m. Compared to the initial greenhouse, the optimized design enhances both radiation interception performance and ensures uniform light distribution. These results offer valuable theoretical guidance for greenhouse construction.

Suggested Citation

  • Chuanqing Wang & Kai Liu & Hongyu Ma & Tianhua Li & Shaojie Wang & Dalong Zhang & Min Wei, 2025. "Solar radiation model and optimization of asymmetric large-span externally insulated plastic greenhouses," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-24, January.
  • Handle: RePEc:plo:pone00:0309734
    DOI: 10.1371/journal.pone.0309734
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309734
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0309734&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0309734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    3. Bo, Yu & Zhang, Yu & Zheng, Kunpeng & Zhang, Jingxu & Wang, Xiaochan & Sun, Jin & Wang, Jian & Shu, Sheng & Wang, Yu & Guo, Shirong, 2023. "Light environment simulation for a three-span plastic greenhouse based on greenhouse light environment simulation software," Energy, Elsevier, vol. 271(C).
    4. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Demin & Fei, Shuaipeng & Wang, Zhi & Zhu, Jinyu & Ma, Yuntao, 2024. "Optimum design of Chinese solar greenhouses for maximum energy availability," Energy, Elsevier, vol. 304(C).
    2. Hu, Guoqing & You, Fengqi, 2022. "Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Bo, Yu & Zhang, Yu & Zheng, Kunpeng & Zhang, Jingxu & Wang, Xiaochan & Sun, Jin & Wang, Jian & Shu, Sheng & Wang, Yu & Guo, Shirong, 2023. "Light environment simulation for a three-span plastic greenhouse based on greenhouse light environment simulation software," Energy, Elsevier, vol. 271(C).
    4. Yao, Haoyi & Liang, Jingkang & Wang, Yunfeng & Li, Ming & Fan, Fangling & Ma, Xun & Xiao, Xin, 2025. "The influence of photovoltaic modules on the greenhouse micro-environment - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    5. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    7. Chunhui Zhang & Haiyang Liu & Chunguang Wang & Zheying Zong & Haichao Wang & Xiaodong Zhao & Shuai Wang & Yanan Li, 2023. "Testing and Analysis on the Spatial and Temporal Distribution of Light Intensity and CO 2 Concentration in Solar Greenhouse," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    8. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    9. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    10. Nursyahirah Mohd Shatar & Mohd Azizi Abdul Rahman & Mohd Nabil Muhtazaruddin & Sheikh Ahmad Zaki Shaikh Salim & Baljit Singh & Firdaus Muhammad-Sukki & Nurul Aini Bani & Ahmad Shakir Mohd Saudi & Jorg, 2019. "Performance Evaluation of Unconcentrated Photovoltaic-Thermoelectric Generator Hybrid System under Tropical Climate," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    11. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Hanrieder, Natalie & Kujawa, Anna & Seychelles, Ana Bendejacq & Blanco, Manuel & Carballo, José & Wilbert, Stefan, 2024. "Estimation of maximum photovoltaic cover ratios in greenhouses based on global irradiance data," Applied Energy, Elsevier, vol. 365(C).
    13. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    14. Skiba, Marta & Mrówczyńska, Maria & Sztubecka, Małgorzata & Bazan-Krzywoszańska, Anna & Kazak, Jan K. & Leśniak, Agnieszka & Janowiec, Filip, 2021. "Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks," Energy, Elsevier, vol. 228(C).
    15. Xu, Demin & Henke, Michael & Li, Yiming & Zhang, Yue & Liu, Anhua & Liu, Xingan & Li, Tianlai, 2024. "Optimal design of light microclimate and planting strategy for Chinese solar greenhouses using 3D light environment simulations," Energy, Elsevier, vol. 302(C).
    16. Feng, Chaoqing & Zhang, Lizhuang & Wang, Rui & Yang, Hongbin & Xu, Zhao & Yan, Suying, 2021. "Greenhouse cover plate with dimming and temperature control function," Energy, Elsevier, vol. 221(C).
    17. Shuyao Dong & Md Shamim Ahamed & Chengwei Ma & Huiqing Guo, 2021. "A Time-Dependent Model for Predicting Thermal Environment of Mono-Slope Solar Greenhouses in Cold Regions," Energies, MDPI, vol. 14(18), pages 1-19, September.
    18. Rabiu, Anis & Adesanya, Misbaudeen Aderemi & Na, Wook-Ho & Ogunlowo, Qazeem O. & Akpenpuun, Timothy D. & Kim, Hyeon Tae & Lee, Hyun-Woo, 2023. "Thermal performance and energy cost of Korean multispan greenhouse energy-saving screens," Energy, Elsevier, vol. 285(C).
    19. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    20. Nima Asgari & Matthew T. McDonald & Joshua M. Pearce, 2023. "Energy Modeling and Techno-Economic Feasibility Analysis of Greenhouses for Tomato Cultivation Utilizing the Waste Heat of Cryptocurrency Miners," Energies, MDPI, vol. 16(3), pages 1-42, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0309734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.