IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307970.html
   My bibliography  Save this article

Uncertainty quantification in neural-network based pain intensity estimation

Author

Listed:
  • Burcu Ozek
  • Zhenyuan Lu
  • Srinivasan Radhakrishnan
  • Sagar Kamarthi

Abstract

Improper pain management leads to severe physical or mental consequences, including suffering, a negative impact on quality of life, and an increased risk of opioid dependency. Assessing the presence and severity of pain is imperative to prevent such outcomes and determine the appropriate intervention. However, the evaluation of pain intensity is a challenging task because different individuals experience pain differently. To overcome this, many researchers in the field have employed machine learning models to evaluate pain intensity objectively using physiological signals. However, these efforts have primarily focused on pain point estimation, disregarding inherent uncertainty and variability in the data and model. A point estimate, which provides only partial information, is not sufficient for sound clinical decision-making. This study proposes a neural network-based method for objective pain interval estimation, and quantification of uncertainty. Our approach, which enables objective pain intensity estimation with desired confidence probabilities, affords clinicians a better understanding of a person’s pain intensity. We explored three distinct algorithms: the bootstrap method, lower and upper bound estimation (LossL) optimized by genetic algorithm, and modified lower and upper bound estimation (LossS) optimized by gradient descent algorithm. Our empirical results demonstrate that LossS outperforms the other two by providing narrower prediction intervals. For 50%, 75%, 85%, and 95% prediction interval coverage probability, LossS provides average interval widths that are 22.4%, 7.9%, 16.7%, and 9.1% narrower than those of LossL, and 19.3%, 21.1%, 23.6%, and 26.9% narrower than those of bootstrap. As LossS outperforms, we assessed its performance in three different model-building approaches: (1) a generalized approach using a single model for the entire population, (2) a personalized approach with separate models for each individual, and (3) a hybrid approach with models for clusters of individuals. Results demonstrate that the hybrid model-building approach provides the best performance.

Suggested Citation

  • Burcu Ozek & Zhenyuan Lu & Srinivasan Radhakrishnan & Sagar Kamarthi, 2024. "Uncertainty quantification in neural-network based pain intensity estimation," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-21, August.
  • Handle: RePEc:plo:pone00:0307970
    DOI: 10.1371/journal.pone.0307970
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307970
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0307970&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sascha Gruss & Roi Treister & Philipp Werner & Harald C Traue & Stephen Crawcour & Adriano Andrade & Steffen Walter, 2015. "Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-14, October.
    2. Quan, Hao & Srinivasan, Dipti & Khosravi, Abbas, 2014. "Uncertainty handling using neural network-based prediction intervals for electrical load forecasting," Energy, Elsevier, vol. 73(C), pages 916-925.
    3. Yankun Wang & Huiming Tang & Tao Wen & Junwei Ma, 2020. "Direct Interval Prediction of Landslide Displacements Using Least Squares Support Vector Machines," Complexity, Hindawi, vol. 2020, pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    2. Mark J Panaggio & Daniel M Abrams & Fan Yang & Tanvi Banerjee & Nirmish R Shah, 2021. "Can subjective pain be inferred from objective physiological data? Evidence from patients with sickle cell disease," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    3. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    4. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    5. Jiyang Wang & Yuyang Gao & Xuejun Chen, 2018. "A Novel Hybrid Interval Prediction Approach Based on Modified Lower Upper Bound Estimation in Combination with Multi-Objective Salp Swarm Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 11(6), pages 1-30, June.
    6. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    7. He, Yaoyao & Xu, Qifa & Wan, Jinhong & Yang, Shanlin, 2016. "Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function," Energy, Elsevier, vol. 114(C), pages 498-512.
    8. Yang, YouLong & Che, JinXing & Li, YanYing & Zhao, YanJun & Zhu, SuLing, 2016. "An incremental electric load forecasting model based on support vector regression," Energy, Elsevier, vol. 113(C), pages 796-808.
    9. Junwei Ma & Xiao Liu & Xiaoxu Niu & Yankun Wang & Tao Wen & Junrong Zhang & Zongxing Zou, 2020. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    10. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling using an effective latent variable based functional link learning machine," Energy, Elsevier, vol. 162(C), pages 883-891.
    11. Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
    12. Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
    13. Saira Al-Zadjali & Ahmed Al Maashri & Amer Al-Hinai & Sultan Al-Yahyai & Mostafa Bakhtvar, 2019. "An Accurate, Light-Weight Wind Speed Predictor for Renewable Energy Management Systems," Energies, MDPI, vol. 12(22), pages 1-20, November.
    14. Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
    15. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    16. Guowei Cai & Wenjin Wang & Junhai Lu, 2016. "A Novel Hybrid Short Term Load Forecasting Model Considering the Error of Numerical Weather Prediction," Energies, MDPI, vol. 9(12), pages 1-19, November.
    17. Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.
    18. Chengshi Tian & Yan Hao, 2018. "A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-34, March.
    19. Fuqiang Li & Shiying Zhang & Wenxuan Li & Wei Zhao & Bingkang Li & Huiru Zhao, 2019. "Forecasting Hourly Power Load Considering Time Division: A Hybrid Model Based on K-means Clustering and Probability Density Forecasting Techniques," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    20. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.