IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300972.html
   My bibliography  Save this article

Can cyclone exposure explain behavioural and demographic variation among lemur species?

Author

Listed:
  • Alison M Behie
  • Travis S Steffens
  • Keaghan Yaxley
  • Alan Vincent
  • Patricia C Wright
  • Steig E Johnson
  • Mary S M Pavelka

Abstract

Madagascar has a harsh and stochastic climate because of regular natural disturbances. This history of regular cyclones has been hypothesised to have directed evolutionary changes to lemur behaviour and morphology that make them more resilient to sudden environmental change. These adaptations may include: small group sizes, high degrees of energy-conserving behaviours, generalist habitat use, small home ranges, small body size, and a limited number of frugivorous species. To date, however, no one has tested how variation in cyclone exposure across Madagascar is associated with variation in these resilience traits. In this study, we created a detailed cyclone impact map for Madagascar using Koppen-Geiger climate class, historical cyclone tracks, the Saffir Class of cyclone and hurricane intensity, and precipitation data. We also used existing literature to calculate a resilience score for 26 lemur species for which data existed on resilience traits. Our cyclone impact map was then overlaid on known geographic ranges of these species and compared to resilience score while controlling for phylogenetic non-independence and spatial autocorrelation. We found no association between cyclone impact in a lemur range and their resilience score. When assessing traits individually, however, we found that cyclone impact was positively associated with body size, suggesting that the more impacted a species is by cyclones the smaller they are. We also found cyclone impact to be negatively associated with frugivory, with species in higher impact zones eating more fruit. While unexpected, this could reflect an increased production in fruit in tree fall gaps following cyclones. While we did not find a pattern between cyclone impact and behavioural resilience in lemurs, we suggest a similar study at a global scale across all primates would allow for more taxonomic variation and reveal larger patterns key to understanding past and future vulnerability to natural disturbances in primates.

Suggested Citation

  • Alison M Behie & Travis S Steffens & Keaghan Yaxley & Alan Vincent & Patricia C Wright & Steig E Johnson & Mary S M Pavelka, 2024. "Can cyclone exposure explain behavioural and demographic variation among lemur species?," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-17, March.
  • Handle: RePEc:plo:pone00:0300972
    DOI: 10.1371/journal.pone.0300972
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300972
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300972&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Lyubing Zhang & Eric I. Ameca & Guy Cowlishaw & Nathalie Pettorelli & Wendy Foden & Georgina M. Mace, 2019. "Global assessment of primate vulnerability to extreme climatic events," Nature Climate Change, Nature, vol. 9(7), pages 554-561, July.
    3. Xia Hua & Simon J. Greenhill & Marcel Cardillo & Hilde Schneemann & Lindell Bromham, 2019. "The ecological drivers of variation in global language diversity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Kevin J.E. Walsh & John L. McBride & Philip J. Klotzbach & Sethurathinam Balachandran & Suzana J. Camargo & Greg Holland & Thomas R. Knutson & James P. Kossin & Tsz‐cheung Lee & Adam Sobel & Masato Su, 2016. "Tropical cyclones and climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 7(1), pages 65-89, January.
    5. Lyubing Zhang & Eric I. Ameca & Guy Cowlishaw & Nathalie Pettorelli & Wendy Foden & Georgina M. Mace, 2019. "Author Correction: Global assessment of primate vulnerability to extreme climatic events," Nature Climate Change, Nature, vol. 9(10), pages 796-796, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Junzhi & Zhang, Ting & Li, Jianzhu & Feng, Ping, 2024. "Simulation of gross primary productivity and impact of drought in Liulin watershed of Taihang mountains over 2000–2020," Ecological Modelling, Elsevier, vol. 489(C).
    2. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    3. Lianjie Qin & Laiyin Zhu & Baoyin Liu & Zixuan Li & Yugang Tian & Gordon Mitchell & Shifei Shen & Wei Xu & Jianguo Chen, 2024. "Global expansion of tropical cyclone precipitation footprint," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    5. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    6. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    7. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    8. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    9. Geoffrey Heal & Howard Kunreuther, 2010. "Environment and Energy: Catastrophic Liabilities from Nuclear Power Plants," NBER Chapters, in: Measuring and Managing Federal Financial Risk, pages 235-257, National Bureau of Economic Research, Inc.
    10. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    11. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    12. Camila I. Donatti & Celia A. Harvey & David Hole & Steven N. Panfil & Hanna Schurman, 2020. "Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation," Climatic Change, Springer, vol. 158(3), pages 413-433, February.
    13. Don Driscoll & Adam Felton & Philip Gibbons & Annika Felton & Nicola Munro & David Lindenmayer, 2012. "Priorities in policy and management when existing biodiversity stressors interact with climate-change," Climatic Change, Springer, vol. 111(3), pages 533-557, April.
    14. Dasgupta, Susmita & Laplante, Benoit & Murray, Siobhan & Wheeler, David, 2009. "Sea-level rise and storm surges : a comparative analysis of impacts in developing countries," Policy Research Working Paper Series 4901, The World Bank.
    15. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    16. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    17. Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    19. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    20. Ruoping Chu & Kai Wang, 2025. "CFD in Urban Wind Resource Assessments: A Review," Energies, MDPI, vol. 18(10), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.