IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295035.html
   My bibliography  Save this article

Carbon opportunity cost increases carbon footprint advantage of grain-finished beef

Author

Listed:
  • Daniel Blaustein-Rejto
  • Nicole Soltis
  • Linus Blomqvist

Abstract

Beef production accounts for the largest share of global livestock greenhouse gas emissions and is an important target for climate mitigation efforts. Most life-cycle assessments comparing the carbon footprint of beef production systems have been limited to production emissions. None also consider potential carbon sequestration due to grazing and alternate uses of land used for production. We assess the carbon footprint of 100 beef production systems in 16 countries, including production emissions, soil carbon sequestration from grazing, and carbon opportunity cost—the potential carbon sequestration that could occur on land if it were not used for production. We conduct a pairwise comparison of pasture-finished operations in which cattle almost exclusively consume grasses and forage, and grain-finished operations in which cattle are first grazed and then fed a grain-based diet. We find that pasture-finished operations have 20% higher production emissions and 42% higher carbon footprint than grain-finished systems. We also find that more land-intensive operations generally have higher carbon footprints. Regression analysis indicates that a 10% increase in land-use intensity is associated with a 4.8% increase in production emissions, but a 9.0% increase in carbon footprint, including production emissions, soil carbon sequestration and carbon opportunity cost. The carbon opportunity cost of operations was, on average, 130% larger than production emissions. These results point to the importance of accounting for carbon opportunity cost in assessing the sustainability of beef production systems and developing climate mitigation strategies.

Suggested Citation

  • Daniel Blaustein-Rejto & Nicole Soltis & Linus Blomqvist, 2023. "Carbon opportunity cost increases carbon footprint advantage of grain-finished beef," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-14, December.
  • Handle: RePEc:plo:pone00:0295035
    DOI: 10.1371/journal.pone.0295035
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295035
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295035&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew N. Hayek & Helen Harwatt & William J. Ripple & Nathaniel D. Mueller, 2021. "The carbon opportunity cost of animal-sourced food production on land," Nature Sustainability, Nature, vol. 4(1), pages 21-24, January.
    2. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huangling Gu & Yan Liu & Hao Xia & Zilong Li & Liyuan Huang & Yanjia Zeng, 2023. "Temporal and Spatial Differences in CO 2 Equivalent Emissions and Carbon Compensation Caused by Land Use Changes and Industrial Development in Hunan Province," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    2. Shang, Hua & Jiang, Li & Kumar Mangla, Sachin & Pan, Xiongfeng & Song, Malin, 2024. "Examining the role of national governance capacity in building the global low-carbon agricultural supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    3. Robinson, Sarah & Petrick, Martin, 2024. "Land access and feeding strategies in post-Soviet livestock husbandry: Evidence from a rangeland system in Kazakhstan," Agricultural Systems, Elsevier, vol. 219(C).
    4. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    5. Dominic Lemken & Mandy Knigge & Stephan Meyerding & Achim Spiller, 2017. "The Value of Environmental and Health Claims on New Legume Products: A Non-Hypothetical Online Auction," Sustainability, MDPI, vol. 9(8), pages 1-18, July.
    6. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    7. Thorn, Alexandra M. & Baker, Michael J. & Peters, Christian J., 2021. "Estimating biological capacity for grass-finished ruminant meat production in New England and New York," Agricultural Systems, Elsevier, vol. 189(C).
    8. Chantal Le Mouël & Anna Birgit Milford & Benjamin L. Bodirsky & Susanne Rolinski, 2019. "Drivers of meat consumption," Post-Print hal-02175593, HAL.
    9. Renate Boronowsky & Kevin Lin-Yang & Lucretia Natanson & Kira Presley & Yashvi Reddy & Alexis Shenkiryk & May Wang & Wendelin Slusser & Pamela A. Koch & David A. Cleveland & Shannon Roback & Deborah O, 2025. "The Carbon Footprint of School Lunch: Moving Toward a Healthy and Sustainable Future for the Next Generation," Sustainability, MDPI, vol. 17(7), pages 1-21, March.
    10. Jennifer A. Jay & Raffaella D’Auria & J. Cully Nordby & David Andy Rice & David A. Cleveland & Anthony Friscia & Sophie Kissinger & Marc Levis & Hannah Malan & Deepak Rajagopal & Joel R. Reynolds & We, 2019. "Reduction of the carbon footprint of college freshman diets after a food-based environmental science course," Climatic Change, Springer, vol. 154(3), pages 547-564, June.
    11. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    12. Mohamed E. Abd El-Hack & Manal E. Shafi & Wed Y. Alghamdi & Sameh A. Abdelnour & Abdelrazeq M. Shehata & Ahmed E. Noreldin & Elwy A. Ashour & Ayman A. Swelum & Ahmed A. Al-Sagan & Mazen Alkhateeb & Ay, 2020. "Black Soldier Fly ( Hermetia illucens ) Meal as a Promising Feed Ingredient for Poultry: A Comprehensive Review," Agriculture, MDPI, vol. 10(8), pages 1-31, August.
    13. Bry-Chevalier, Tom, 2024. "Comparing the potential of meat alternatives for a more sustainable food system," OSF Preprints ze5yt, Center for Open Science.
    14. Adam C. Castonguay & Stephen Polasky & Matthew H. Holden & Mario Herrero & Daniel Mason-D’Croz & Cecile Godde & Jinfeng Chang & James Gerber & G. Bradd Witt & Edward T. Game & Brett A. Bryan & Brendan, 2023. "Navigating sustainability trade-offs in global beef production," Nature Sustainability, Nature, vol. 6(3), pages 284-294, March.
    15. Ghada Talat Alhothali & Noha M. Almoraie & Israa M. Shatwan & Najlaa M. Aljefree, 2021. "Sociodemographic Characteristics and Dietary Choices as Determinants of Climate Change Understanding and Concern in Saudi Arabia," IJERPH, MDPI, vol. 18(20), pages 1-14, October.
    16. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    17. Louise Seconda & Julia Baudry & Benjamin Allès & Christine Boizot-Szantai & Louis-Georges Soler & Pilar Galan & Serge Hercberg & Brigitte Langevin & Denis Lairon & Philippe Pointereau & Emmanuelle Kes, 2018. "Comparing nutritional, economic, and environmental performances of diets according to their levels of greenhouse gas emissions," Climatic Change, Springer, vol. 148(1), pages 155-172, May.
    18. Blignaut, James & Meissner, Heinz & Smith, Hendrik & du Toit, Linde, 2022. "An integrative bio-physical approach to determine the greenhouse gas emissions and carbon sinks of a cow and her offspring in a beef cattle operation: A system dynamics approach," Agricultural Systems, Elsevier, vol. 195(C).
    19. Karen Page Winterich & Rebecca Walker Reczek & Tamar Makov, 2024. "How lack of knowledge on emissions and psychological biases deter consumers from taking effective action to mitigate climate change," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1475-1494, October.
    20. Peters, Christian J. & Picardy, Jamie A. & Darrouzet-Nardi, Amelia & Griffin, Timothy S., 2014. "Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems," Agricultural Systems, Elsevier, vol. 130(C), pages 35-43.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.