IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291352.html
   My bibliography  Save this article

A hierarchical model for strategic and operational planning in blood transportation with drones

Author

Listed:
  • Amirali Amirsahami
  • Farnaz Barzinpour
  • Mir Saman Pishvaee

Abstract

Blood transportation is a critical aspect of the healthcare systems, ensuring whole blood and blood products are delivered to patients in a timely and efficient manner. However, transportation of blood and other medical supplies can be challenging, especially in urban areas with limited infrastructure and heavy traffic. Drones have become increasingly important in recent years as a means of delivering medical supplies, including blood, due to their ability to provide fast, reliable, and cost-effective transportation. This study proposes two mathematical programming models in the hierarchical structure to improve decision-making for strategic and operational planning in the blood supply chain network. The limited information available in strategic planning presents risks to the blood supply chain, making it imperative to address uncertainties. To tackle this challenge, a novel approach called Scenario-based Robust Bi-objective Optimization has been proposed. The first model employs this approach to efficiently handle demand uncertainty by simultaneously maximizing the covered demand and minimizing costs. The model is subsequently solved using the augmented ε-constraint method. The second model is a routing-scheduling operational model that aims to minimize the sum of operations time, taking into account time windows for blood collection centers and hospitals. The developed hierarchical model is implemented in a three-level supply chain of Tehran province under three crisis scenarios in different parts. The findings and analysis of this implementation suggest that it is beneficial to set up drone stations in cost-effective and central locations to avoid costly network design. Furthermore, utilizing the minimum number of feasible drones enhances operational time and results in cost savings and increased efficiency. Overall, this study highlights the potential of using drones for blood transportation in urban settings, which can have significant implications for improving the quality of healthcare delivery.

Suggested Citation

  • Amirali Amirsahami & Farnaz Barzinpour & Mir Saman Pishvaee, 2023. "A hierarchical model for strategic and operational planning in blood transportation with drones," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-31, September.
  • Handle: RePEc:plo:pone00:0291352
    DOI: 10.1371/journal.pone.0291352
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291352
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291352&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moshref-Javadi, Mohammad & Lee, Seokcheon & Winkenbach, Matthias, 2020. "Design and evaluation of a multi-trip delivery model with truck and drones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    2. Tingxi Wen & Zhongnan Zhang & Kelvin K L Wong, 2016. "Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-22, May.
    3. Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
    4. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    5. Gregory P. Prastacos, 1984. "Blood Inventory Management: An Overview of Theory and Practice," Management Science, INFORMS, vol. 30(7), pages 777-800, July.
    6. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    7. Dongwook Kim & Kyungsik Lee & Ilkyeong Moon, 2019. "Stochastic facility location model for drones considering uncertain flight distance," Annals of Operations Research, Springer, vol. 283(1), pages 1283-1302, December.
    8. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    9. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    2. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    3. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    4. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.
    5. Ana Margarida Araújo & Daniel Santos & Inês Marques & Ana Barbosa-Povoa, 2020. "Blood supply chain: a two-stage approach for tactical and operational planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1023-1053, December.
    6. Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
    7. Anna Nagurney & Pritha Dutta, 2019. "Supply chain network competition among blood service organizations: a Generalized Nash Equilibrium framework," Annals of Operations Research, Springer, vol. 275(2), pages 551-586, April.
    8. Dillon, Mary & Oliveira, Fabricio & Abbasi, Babak, 2017. "A two-stage stochastic programming model for inventory management in the blood supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 27-41.
    9. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    10. Babak Abbasi & Golnaz Vakili & Stuart Chesneau, 2017. "Impacts of Reducing the Shelf Life of Red Blood Cells: A View from Down Under," Interfaces, INFORMS, vol. 47(4), pages 336-351, August.
    11. Pahl, Julia & Voß, Stefan, 2014. "Integrating deterioration and lifetime constraints in production and supply chain planning: A survey," European Journal of Operational Research, Elsevier, vol. 238(3), pages 654-674.
    12. Turgay Ayer & Can Zhang & Chenxi Zeng & Chelsea C. White III & V. Roshan Joseph, 2019. "Analysis and Improvement of Blood Collection Operations," Service Science, INFORMS, vol. 21(1), pages 29-46, January.
    13. Benyong Hu & Longmei Tian & Kangli Zhao & Xu Chen, 2024. "Optimization of blood supply chains under different supply scenarios," Annals of Operations Research, Springer, vol. 335(1), pages 597-633, April.
    14. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    15. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    16. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    17. Wang, Ke-Ming & Ma, Zu-Jun, 2015. "Age-based policy for blood transshipment during blood shortage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 166-183.
    18. Bruno, Giuseppe & Diglio, Antonio & Piccolo, Carmela & Cannavacciuolo, Lorella, 2019. "Territorial reorganization of regional blood management systems: Evidences from an Italian case study," Omega, Elsevier, vol. 89(C), pages 54-70.
    19. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
    20. M. Rezaei Kallaj & M. Hasannia Kolaee & S. M. J. Mirzapour Al-e-hashem, 2023. "Integrating bloodmobiles and drones in a post-disaster blood collection problem considering blood groups," Annals of Operations Research, Springer, vol. 321(1), pages 783-811, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.