IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0290743.html
   My bibliography  Save this article

Hierarchical growth in neural networks structure: Organizing inputs by Order of Hierarchical Complexity

Author

Listed:
  • Sofia Leite
  • Bruno Mota
  • António Ramos Silva
  • Michael Lamport Commons
  • Patrice Marie Miller
  • Pedro Pereira Rodrigues

Abstract

Several studies demonstrate that the structure of the brain increases in hierarchical complexity throughout development. We tested if the structure of artificial neural networks also increases in hierarchical complexity while learning a developing task, called the balance beam problem. Previous simulations of this developmental task do not reflect a necessary premise underlying development: a more complex structure can be built out of less complex ones, while ensuring that the more complex structure does not replace the less complex one. In order to address this necessity, we segregated the input set by subsets of increasing Orders of Hierarchical Complexity. This is a complexity measure that has been extensively shown to underlie the complexity behavior and hypothesized to underlie the complexity of the neural structure of the brain. After segregating the input set, minimal neural network models were trained separately for each input subset, and adjacent complexity models were analyzed sequentially to observe whether there was a structural progression. Results show that three different network structural progressions were found, performing with similar accuracy, pointing towards self-organization. Also, more complex structures could be built out of less complex ones without substituting them, successfully addressing catastrophic forgetting and leveraging performance of previous models in the literature. Furthermore, the model structures trained on the two highest complexity subsets performed better than simulations of the balance beam present in the literature. As a major contribution, this work was successful in addressing hierarchical complexity structural growth in neural networks, and is the first that segregates inputs by Order of Hierarchical Complexity. Since this measure can be applied to all domains of data, the present method can be applied to future simulations, systematizing the simulation of developmental and evolutionary structural growth in neural networks.

Suggested Citation

  • Sofia Leite & Bruno Mota & António Ramos Silva & Michael Lamport Commons & Patrice Marie Miller & Pedro Pereira Rodrigues, 2023. "Hierarchical growth in neural networks structure: Organizing inputs by Order of Hierarchical Complexity," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-24, August.
  • Handle: RePEc:plo:pone00:0290743
    DOI: 10.1371/journal.pone.0290743
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290743
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0290743&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0290743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Douglas Heaven, 2019. "Why deep-learning AIs are so easy to fool," Nature, Nature, vol. 574(7777), pages 163-166, October.
    2. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    2. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    3. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    4. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    6. Ostheimer, Julia & Chowdhury, Soumitra & Iqbal, Sarfraz, 2021. "An alliance of humans and machines for machine learning: Hybrid intelligent systems and their design principles," Technology in Society, Elsevier, vol. 66(C).
    7. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    8. Rui Wang & Ming Lyu & Jie Zhang, 2025. "A Multi-Robot Collaborative Exploration Method Based on Deep Reinforcement Learning and Knowledge Distillation," Mathematics, MDPI, vol. 13(1), pages 1-17, January.
    9. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    10. Mandal, Ankit & Tiwari, Yash & Panigrahi, Prasanta K. & Pal, Mayukha, 2022. "Physics aware analytics for accurate state prediction of dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Adnan Jafar & Alessandra Kobayati & Michael A. Tsoukas & Ahmad Haidar, 2024. "Personalized insulin dosing using reinforcement learning for high-fat meals and aerobic exercises in type 1 diabetes: a proof-of-concept trial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Lan Luo, By & Shi, Chengchun & Wang, Jitao & Wu, Zhenke & Li, Lexin, 2025. "Multivariate dynamic mediation analysis under a reinforcement learning framework," LSE Research Online Documents on Economics 127112, London School of Economics and Political Science, LSE Library.
    13. Bossert, Leonie & Hagendorff, Thilo, 2021. "Animals and AI. The role of animals in AI research and application – An overview and ethical evaluation," Technology in Society, Elsevier, vol. 67(C).
    14. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    15. Artur Kwasek & Maria Kocot & Izabela Gontarek & Igor Protasowicki & Bartosz Blaszczak, 2024. "Negative Faces of Artificial Intelligence in the Conditions of the Knowledge-Based Economy," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 465-477.
    16. Chung-Yuan Chang & Yen-Wei Feng & Tejender Singh Rawat & Shih-Wei Chen & Albert Shihchun Lin, 2025. "Optimization of laser annealing parameters based on bayesian reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2479-2492, April.
    17. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    18. Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
    19. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    20. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0290743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.