IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006514.html
   My bibliography  Save this article

RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks

Author

Listed:
  • Jun Li
  • Wei Zhu
  • Jun Wang
  • Wenfei Li
  • Sheng Gong
  • Jian Zhang
  • Wei Wang

Abstract

Quality assessment is essential for the computational prediction and design of RNA tertiary structures. To date, several knowledge-based statistical potentials have been proposed and proved to be effective in identifying native and near-native RNA structures. All these potentials are based on the inverse Boltzmann formula, while differing in the choice of the geometrical descriptor, reference state, and training dataset. Via an approach that diverges completely from the conventional statistical potentials, our work explored the power of a 3D convolutional neural network (CNN)-based approach as a quality evaluator for RNA 3D structures, which used a 3D grid representation of the structure as input without extracting features manually. The RNA structures were evaluated by examining each nucleotide, so our method can also provide local quality assessment. Two sets of training samples were built. The first one included 1 million samples generated by high-temperature molecular dynamics (MD) simulations and the second one included 1 million samples generated by Monte Carlo (MC) structure prediction. Both MD and MC procedures were performed for a non-redundant set of 414 RNAs. For two training datasets (one including only MD training samples and the other including both MD and MC training samples), we trained two neural networks, named RNA3DCNN_MD and RNA3DCNN_MDMC, respectively. The former is suitable for assessing near-native structures, while the latter is suitable for assessing structures covering large structural space. We tested the performance of our method and made comparisons with four other traditional scoring functions. On two of three test datasets, our method performed similarly to the state-of-the-art traditional scoring function, and on the third test dataset, our method was far superior to other scoring functions. Our method can be downloaded from https://github.com/lijunRNA/RNA3DCNN.Author summary: RNA is an important and versatile macromolecule participating in various biological processes. In addition to experimental approaches, the computational prediction of RNA 3D structures is an alternative and important source of obtaining structural information and insights into their functions. An important part of these computational prediction approaches is structural quality assessment. For this purpose, we developed a 3D CNN-based approach named RNA3DCNN. This approach uses raw atom distributions in 3D space as the input of neural networks and the output is an RMSD-based nucleotide unfitness score for each nucleotide in an RNA molecule, thus making it possible to evaluate local structural quality. Here, we tested and made comparisons with four other traditional scoring functions on three test datasets from different sources.

Suggested Citation

  • Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
  • Handle: RePEc:plo:pcbi00:1006514
    DOI: 10.1371/journal.pcbi.1006514
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006514
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006514&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Liu & Shi-Jie Chen, 2012. "Coarse-Grained Prediction of RNA Loop Structures," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-15, November.
    2. Tsang, Eric W. K., 2014. "Old and New," Management and Organization Review, Cambridge University Press, vol. 10(03), pages 390-390, November.
    3. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    4. Jes Frellsen & Ida Moltke & Martin Thiim & Kanti V Mardia & Jesper Ferkinghoff-Borg & Thomas Hamelryck, 2009. "A Probabilistic Model of RNA Conformational Space," PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-11, June.
    5. Marc Parisien & François Major, 2008. "The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data," Nature, Nature, vol. 452(7183), pages 51-55, March.
    6. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengwei Zeng & Yiren Jian & Soroush Vosoughi & Chen Zeng & Yunjie Zhao, 2023. "Evaluating native-like structures of RNA-protein complexes through the deep learning method," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    2. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    3. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    4. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    5. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    6. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    7. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    8. Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    9. Pujin Wang & Jianzhuang Xiao & Ken’ichi Kawaguchi & Lichen Wang, 2022. "Automatic Ceiling Damage Detection in Large-Span Structures Based on Computer Vision and Deep Learning," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    10. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    11. Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
    12. Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
    13. Shijun Wang & Baocheng Zhu & Chen Li & Mingzhe Wu & James Zhang & Wei Chu & Yuan Qi, 2020. "Riemannian Proximal Policy Optimization," Computer and Information Science, Canadian Center of Science and Education, vol. 13(3), pages 1-93, August.
    14. Michael F Sloma & David H Mathews, 2017. "Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-23, November.
    15. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Yi Cheng & Chuzhi Zhao & Pradeep Neupane & Bradley Benjamin & Jiawei Wang & Tongsheng Zhang, 2023. "Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis," Energies, MDPI, vol. 16(3), pages 1-15, January.
    17. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    18. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    19. Jun Li & Jian Zhang & Jun Wang & Wenfei Li & Wei Wang, 2016. "Structure Prediction of RNA Loops with a Probabilistic Approach," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    20. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.