IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287546.html
   My bibliography  Save this article

An investigation of the performance of parametric functional forms for the Lorenz curve

Author

Listed:
  • Thitithep Sitthiyot
  • Kanyarat Holasut

Abstract

Given that an excellent performance of any parametric functional form for the Lorenz curve that is based on a single country case study and a limited range of distribution must be treated with great caution, this study investigates the performance of a single-parameter functional form proposed by Paul and Shankar (2020) who use income data of Australia to show that their functional form is superior to the other existing widely used functional forms considered in their study. By using both mathematical proof and empirical data of 40 countries around the world, this study demonstrates that Paul and Shankar (2020)’s functional form not only fails to fit the actual observations well but also is generally outperformed by the other popular functional forms considered in their study. Moreover, to overcome the limitation of the performance of a single-parameter functional form on the criterion of the estimated Gini index, this study employs a functional form that has more than one parameter in order to show that, by and large, it performs better than all popular single-parameter functional forms considered in Paul and Shankar (2020)’s study. Thus, before applying any functional form to estimate the Lorenz curve, policymakers should check if it could describe the shape of income distributions of different countries through the changes in parameter values and yield the values of the estimated Gini index that are close to their observed data. Using a functional form that does not fit the actual observations could adversely affect inequality measures and income distribution policies.

Suggested Citation

  • Thitithep Sitthiyot & Kanyarat Holasut, 2023. "An investigation of the performance of parametric functional forms for the Lorenz curve," PLOS ONE, Public Library of Science, vol. 18(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0287546
    DOI: 10.1371/journal.pone.0287546
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287546
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287546&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    2. Kakwani, N C & Podder, N, 1973. "On the Estimation of Lorenz Curves from Grouped Observations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 278-292, June.
    3. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Papers 2112.15291, arXiv.org.
    4. Kakwani, Nanak C & Podder, N, 1976. "Efficient Estimation of the Lorenz Curve and Associated Inequality Measures from Grouped Observations," Econometrica, Econometric Society, vol. 44(1), pages 137-148, January.
    5. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    6. Kakwani, Nanak, 1980. "On a Class of Poverty Measures," Econometrica, Econometric Society, vol. 48(2), pages 437-446, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobo Shen & Pingsheng Dai, 2024. "A regression method for estimating Gini index by decile," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-8, December.
    2. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    3. Francois, Joseph & Rojas-Romagosa, Hugo, 2005. "The Construction and Interpretation of Combined Cross-Section and Time-Series Inequality Datasets," CEPR Discussion Papers 5214, C.E.P.R. Discussion Papers.
    4. Johan Fellman, 2021. "Empirical Analyses of Income: Finland (2009) and Australia (1967-1968)," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 10(1), pages 1-3.
    5. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    6. Florent Bresson, 2010. "A general class of inequality elasticities of poverty," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 8(1), pages 71-100, March.
    7. Ogwang, Tomson & Gouranga Rao, U. L., 1996. "A new functional form for approximating the Lorenz curve," Economics Letters, Elsevier, vol. 52(1), pages 21-29, July.
    8. Kwang Soo Cheong, 1999. "A Comparison of Alternative Functional Forms For Parametric Estimation of the Lorenz Curve," Working Papers 199902, University of Hawaii at Manoa, Department of Economics.
    9. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    10. Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
    11. Rohde, Nicholas, 2009. "An alternative functional form for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 105(1), pages 61-63, October.
    12. Thitithep Sitthiyot & Kanyarat Holasut, 2023. "A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality," Papers 2304.13934, arXiv.org.
    13. Llinas, Joan Baro & Cabases Pique, Ma Angels & Gomez Adillon, Ma Jesus, 1999. "Analysis of the Concentration of the Structural Funds in the Autonomous Communities in Spain," ERSA conference papers ersa99pa138, European Regional Science Association.
    14. Kikuchi, Tadashi, 2007. "An analysis of the impacts of development on Gini inequality using grouped and individual observations: Examples from the 1998 Vietnamese Household Expenditure Data," Journal of Asian Economics, Elsevier, vol. 18(3), pages 537-552, June.
    15. Subhadip Sarkar, 2023. "ABC classification using extended R-model, SVM and Lorenz curve," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1433-1455, September.
    16. Zhou, Wei & Li, Xuelian & Lin, Jyh-Horng & Chang, Chuen-Ping & Cai, Yujie, 2024. "Aligning common prosperity with sustainable development goals 3 and 7 through sustainable insurance," Energy Economics, Elsevier, vol. 140(C).
    17. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    18. Gaurav Datt & Ranjan Ray & Christopher Teh, 2022. "Progressivity and redistributive effects of income taxes: evidence from India," Empirical Economics, Springer, vol. 63(1), pages 141-178, July.
    19. Konstantinos N. Zafeiris, 2023. "Greece since the 1960s: the mortality transition revisited: a joinpoint regression analysis," Journal of Population Research, Springer, vol. 40(1), pages 1-31, March.
    20. Binh Tran‐Nam & Nripesh Podder, 1992. "On the Estimation of Total Expenditure Elasticities from Derived Engel Functions with Applications to Australian Micro‐Data," The Economic Record, The Economic Society of Australia, vol. 68(2), pages 142-150, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.