IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0286770.html
   My bibliography  Save this article

Anomaly detection method for building energy consumption in multivariate time series based on graph attention mechanism

Author

Listed:
  • Zhe Zhang
  • Yuhao Chen
  • Huixue Wang
  • Qiming Fu
  • Jianping Chen
  • You Lu

Abstract

A critical issue in intelligent building control is detecting energy consumption anomalies based on intelligent device status data. The building field is plagued by energy consumption anomalies caused by a number of factors, many of which are associated with one another in apparent temporal relationships. For the detection of abnormalities, most traditional detection methods rely solely on a single variable of energy consumption data and its time series changes. Therefore, they are unable to examine the correlation between the multiple characteristic factors that affect energy consumption anomalies and their relationship in time. The outcomes of anomaly detection are one-sided. To address the above problems, this paper proposes an anomaly detection method based on multivariate time series. Firstly, in order to extract the correlation between different feature variables affecting energy consumption, this paper introduces a graph convolutional network to build an anomaly detection framework. Secondly, as different feature variables have different influences on each other, the framework is enhanced by a graph attention mechanism so that time series features with higher influence on energy consumption are given more attention weights, resulting in better anomaly detection of building energy consumption. Finally, the effectiveness of this paper’s method and existing methods for detecting energy consumption anomalies in smart buildings are compared using standard data sets. The experimental results show that the model has better detection accuracy.

Suggested Citation

  • Zhe Zhang & Yuhao Chen & Huixue Wang & Qiming Fu & Jianping Chen & You Lu, 2023. "Anomaly detection method for building energy consumption in multivariate time series based on graph attention mechanism," PLOS ONE, Public Library of Science, vol. 18(6), pages 1-23, June.
  • Handle: RePEc:plo:pone00:0286770
    DOI: 10.1371/journal.pone.0286770
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286770
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286770&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0286770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    2. Lei, Lei & Wu, Bing & Fang, Xin & Chen, Li & Wu, Hao & Liu, Wei, 2023. "A dynamic anomaly detection method of building energy consumption based on data mining technology," Energy, Elsevier, vol. 263(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    2. Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
    3. Lee, Chien-Chiang & Zou, Jinyang & Chen, Pei-Fen, 2025. "The impact of artificial intelligence on the energy consumption of corporations: The role of human capital," Energy Economics, Elsevier, vol. 143(C).
    4. Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
    5. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    6. Islam, Md. Monirul & Shahbaz, Muhammad & Ahmed, Faroque, 2024. "Robot race in geopolitically risky environment: Exploring the Nexus between AI-powered tech industrial outputs and energy consumption in Singapore," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    7. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    8. Huo, Da & Gu, Wenjia & Guo, Dongmei & Tang, Aidi, 2024. "The service trade with AI and energy efficiency: Multiplier effect of the digital economy in a green city by using quantum computation based on QUBO modeling," Energy Economics, Elsevier, vol. 140(C).
    9. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
    10. Dai, Shuang & Eames, Matt & Vinai, Raffaele & Sucala, Voicu Ion, 2025. "EnergyNet: A modality-aware attention fusion network for building energy efficiency classification," Applied Energy, Elsevier, vol. 379(C).
    11. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    12. Thomas Wu & Bo Wang & Dongdong Zhang & Ziwei Zhao & Hongyu Zhu, 2023. "Benchmarking Evaluation of Building Energy Consumption Based on Data Mining," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    13. Palaniappan, Somasundaram & Karuppannan, Sundararaju & Velusamy, Durgadevi, 2024. "Categorization of Indian residential consumers electrical energy consumption pattern using clustering and classification techniques," Energy, Elsevier, vol. 289(C).
    14. Bartlomiej Kawa & Piotr Borkowski, 2023. "Integration of Machine Learning Solutions in the Building Automation System," Energies, MDPI, vol. 16(11), pages 1-18, June.
    15. Latifa A. Yousef & Hibba Yousef & Lisandra Rocha-Meneses, 2023. "Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions," Energies, MDPI, vol. 16(24), pages 1-27, December.
    16. Sayed, Aya Nabil & Himeur, Yassine & Varlamis, Iraklis & Bensaali, Faycal, 2025. "Continual learning for energy management systems: A review of methods and applications, and a case study," Applied Energy, Elsevier, vol. 384(C).
    17. Cristina Nichiforov & Antonio Martinez-Molina & Miltiadis Alamaniotis, 2021. "An Intelligent Approach for Performing Energy-Driven Classification of Buildings Utilizing Joint Electricity–Gas Patterns," Energies, MDPI, vol. 14(22), pages 1-11, November.
    18. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    19. Wang, Xinlin & Flores, Robert & Brouwer, Jack & Papaefthymiou, Marios, 2022. "Real-time detection of electrical load anomalies through hyperdimensional computing," Energy, Elsevier, vol. 261(PA).
    20. Zhang, Limao & Guo, Jing & Lin, Penghui & Tiong, Robert L.K., 2025. "Detecting energy consumption anomalies with dynamic adaptive encoder-decoder deep learning networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0286770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.