IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922011709.html
   My bibliography  Save this article

A home energy management system incorporating data-driven uncertainty-aware user preference

Author

Listed:
  • Liu, Yinyan
  • Ma, Jin
  • Xing, Xinjie
  • Liu, Xinglu
  • Wang, Wei

Abstract

Today, with the increase in the integration of renewable sources, the home energy management system (HEMS) has become a promising approach to improve grid energy efficiency and relieve network stress. Traditionally, complicated thermal models or passive participation of the users prevents HEMS from fully automating the involvement of demand-side energy management. In this paper, an advanced HEMS is proposed incorporating uncertainty-aware user preference. The energy consumption user behavior, including temporal and temperature habits, is firstly characterized in a data-driven way with non-intrusive load monitoring (NILM). To capture the potential uncertainties resulting from the characteristics of NILM modeling, a novel NILM model is developed with Bayesian theory. The NILM-based preference level is further integrated into the HEMS to schedule the appliances and respond the demand response (DR) signals for economic benefits. Extensive experiments are performed with the real-world dataset. The effectiveness and superiority of the proposed algorithm are demonstrated particularly in reducing the energy cost, maintaining the user’s preference level, and encouraging users to participate in DR. Compared to a traditional HEMS as a benchmark, the proposed HEMS for a 24-hour horizon can trade-off limited electricity costs to keep the preference at a high level.

Suggested Citation

  • Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011709
    DOI: 10.1016/j.apenergy.2022.119911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
    2. Varlamis, Iraklis & Sardianos, Christos & Chronis, Christos & Dimitrakopoulos, George & Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2022. "Smart fusion of sensor data and human feedback for personalized energy-saving recommendations," Applied Energy, Elsevier, vol. 305(C).
    3. Rocha, Helder R.O. & Honorato, Icaro H. & Fiorotti, Rodrigo & Celeste, Wanderley C. & Silvestre, Leonardo J. & Silva, Jair A.L., 2021. "An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes," Applied Energy, Elsevier, vol. 282(PA).
    4. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    5. Munankarmi, Prateek & Maguire, Jeff & Balamurugan, Sivasathya Pradha & Blonsky, Michael & Roberts, David & Jin, Xin, 2021. "Community-scale interaction of energy efficiency and demand flexibility in residential buildings," Applied Energy, Elsevier, vol. 298(C).
    6. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    7. Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
    8. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    9. Killian, M. & Zauner, M. & Kozek, M., 2018. "Comprehensive smart home energy management system using mixed-integer quadratic-programming," Applied Energy, Elsevier, vol. 222(C), pages 662-672.
    10. Pang, Zhihong & Chen, Yan & Zhang, Jian & O'Neill, Zheng & Cheng, Hwakong & Dong, Bing, 2021. "How much HVAC energy could be saved from the occupant-centric smart home thermostat: A nationwide simulation study," Applied Energy, Elsevier, vol. 283(C).
    11. Zheng, Zhuang & Sun, Zhankun & Pan, Jia & Luo, Xiaowei, 2021. "An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems," Applied Energy, Elsevier, vol. 298(C).
    12. Shahzad, Sally & Calautit, John Kaiser & Hughes, Ben Richard & Satish, B.K. & Rijal, Hom B., 2019. "Patterns of thermal preference and Visual Thermal Landscaping model in the workplace," Applied Energy, Elsevier, vol. 255(C).
    13. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    14. Afzalan, Milad & Jazizadeh, Farrokh, 2019. "Residential loads flexibility potential for demand response using energy consumption patterns and user segments," Applied Energy, Elsevier, vol. 254(C).
    15. Zhang, Chao & Lasaulce, Samson & Wang, Li & Saludjian, Lucas & Poor, H. Vincent, 2022. "A refined consumer behavior model for energy systems: Application to the pricing and energy-efficiency problems," Applied Energy, Elsevier, vol. 308(C).
    16. Amir Rafati & Hamid Reza Shaker & Saman Ghahghahzadeh, 2022. "Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review," Energies, MDPI, vol. 15(1), pages 1-16, January.
    17. Matsui, Kanae & Ochiai, Hideya & Yamagata, Yoshiki, 2014. "Feedback on electricity usage for home energy management: A social experiment in a local village of cold region," Applied Energy, Elsevier, vol. 120(C), pages 159-168.
    18. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    19. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Xiaochao & Wang, Chao & Wu, Tao & Li, Ruiheng & Zhu, Houyi & Zhang, Huaiqing, 2023. "Detecting the novel appliance in non-intrusive load monitoring," Applied Energy, Elsevier, vol. 343(C).
    2. Tom Savage & Antonio del Rio Chanona & Gbemi Oluleye, 2023. "Robust Market Potential Assessment: Designing optimal policies for low-carbon technology adoption in an increasingly uncertain world," Papers 2304.10203, arXiv.org.
    3. Mohammed Qais & K. H. Loo & Hany M. Hasanien & Saad Alghuwainem, 2023. "Optimal Comfortable Load Schedule for Home Energy Management Including Photovoltaic and Battery Systems," Sustainability, MDPI, vol. 15(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
    2. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    3. Karol Bot & Inoussa Laouali & António Ruano & Maria da Graça Ruano, 2021. "Home Energy Management Systems with Branch-and-Bound Model-Based Predictive Control Techniques," Energies, MDPI, vol. 14(18), pages 1-27, September.
    4. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    5. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).
    6. Li, Chuyi & Zheng, Kedi & Guo, Hongye & Chen, Qixin, 2023. "A mixed-integer programming approach for industrial non-intrusive load monitoring," Applied Energy, Elsevier, vol. 330(PA).
    7. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    8. Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
    9. Jun Dong & Xihao Dou & Dongran Liu & Aruhan Bao & Dongxue Wang & Yunzhou Zhang & Peng Jiang, 2023. "Benefit Sharing of Power Transactions in Distributed Energy Systems with Multiple Participants," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
    10. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    11. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    12. Jéssica Kuntz Maykot & Candi Citadini de Oliveira & Enedir Ghisi & Ricardo Forgiarini Rupp, 2022. "Influence of Gender on Thermal, Air-Movement, Humidity and Air-Quality Perception in Mixed-Mode and Fully Air-Conditioned Offices," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    13. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    14. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    15. Vega, A.M. & Santamaria, F. & Rivas, E., 2015. "Modeling for home electric energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 948-959.
    16. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    17. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    18. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    19. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    20. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.