IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0286624.html
   My bibliography  Save this article

Excursions in the Bayesian treatment of model error

Author

Listed:
  • L Mark Berliner
  • Radu Herbei
  • Christopher K Wikle
  • Ralph F Milliff

Abstract

Advances in observational and computational assets have led to revolutions in the range and quality of results in many science and engineering settings. However, those advances have led to needs for new research in treating model errors and assessing their impacts. We consider two settings. The first involves physically-based statistical models that are sufficiently manageable to allow incorporation of a stochastic “model error process”. In the second case we consider large-scale models in which incorporation of a model error process and updating its distribution is impractical. Our suggestion is to treat dimension-reduced model output as if it is observational data, with a data model that incorporates a bias component to represent the impacts of model error. We believe that our suggestions are valuable quantitative, yet relatively simple, ways to extract useful information from models while including adjustment for model error. These ideas are illustrated and assessed using an application inspired by a classical oceanographic problem.

Suggested Citation

  • L Mark Berliner & Radu Herbei & Christopher K Wikle & Ralph F Milliff, 2023. "Excursions in the Bayesian treatment of model error," PLOS ONE, Public Library of Science, vol. 18(6), pages 1-22, June.
  • Handle: RePEc:plo:pone00:0286624
    DOI: 10.1371/journal.pone.0286624
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286624
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286624&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0286624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    2. Higdon, Dave & Gattiker, James & Williams, Brian & Rightley, Maria, 2008. "Computer Model Calibration Using High-Dimensional Output," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 570-583, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    2. Chamberlain, Gary, 2000. "Econometrics and decision theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 255-283, April.
    3. Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
    4. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    5. Dragon Yongjun Tang, 2014. "Potential losses from incorporating return predictability into portfolio allocation," Australian Journal of Management, Australian School of Business, vol. 39(1), pages 35-45, February.
    6. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    8. Wu, Xu & Kozlowski, Tomasz & Meidani, Hadi, 2018. "Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 422-436.
    9. Sun, Yang & Fang, Xiangzhong, 2024. "Efficient calibration of computer models with multivariate output," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    10. Gómez-Villegas, Miguel A. & Sanz, Luis, 2000. "[var epsilon]-contaminated priors in testing point null hypothesis: a procedure to determine the prior probability," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 53-60, March.
    11. Didier Dubois, 2010. "Representation, Propagation, and Decision Issues in Risk Analysis Under Incomplete Probabilistic Information," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 361-368, March.
    12. Paulo, Rui & García-Donato, Gonzalo & Palomo, Jesús, 2012. "Calibration of computer models with multivariate output," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3959-3974.
    13. Igor Kopylov, 2016. "Subjective probability, confidence, and Bayesian updating," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 62(4), pages 635-658, October.
    14. Pankaj Sinha & Ashok Bansal, 2008. "Bayesian optimization analysis with ML-II ε-contaminated prior," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(2), pages 203-211.
    15. Lars P. Hansen & Thomas J. Sargent, 2016. "Sets of Models and Prices of Uncertainty," NBER Working Papers 22000, National Bureau of Economic Research, Inc.
    16. Kim, Hyungjin & Park, Chuljin & Kim, Heeyoung, 2025. "Multi-task optimization with Bayesian neural network surrogates for parameter estimation of a simulation model," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    17. Hansen, Lars Peter & Sargent, Thomas J., 2021. "Macroeconomic uncertainty prices when beliefs are tenuous," Journal of Econometrics, Elsevier, vol. 223(1), pages 222-250.
    18. Chamberlain Mbah & Kris Peremans & Stefan Van Aelst & Dries F. Benoit, 2019. "Robust Bayesian seemingly unrelated regression model," Computational Statistics, Springer, vol. 34(3), pages 1135-1157, September.
    19. Jacinto Martín & David Insua & Fabrizio Ruggeri, 2003. "Joint sensitivity in bayesian decision theory," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 173-194, June.
    20. Peña, Daniel & Zamar, Ruben, 1997. "A simple diagnostic tool for local prior sensitivity," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 205-212, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0286624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.