IDEAS home Printed from https://ideas.repec.org/a/lrk/eeaart/19_3_13.html
   My bibliography  Save this article

Fijación de primas de seguros bajo técnicas de robustez bayesiana

Author

Listed:
  • GÓMEZ DÉNIZ, E.

    () (Departamento de Métodos Cuantitativos en Economía y Gestión. Universidad de Las Palmas de G.C. Fac. CC. Económicas. Módulo D. Campus de Tafira.)

  • PÉREZ SÁNCHEZ, J. M.

    () (Departamento de Métodos Cuantitativos en Economía y Gestión. Universidad de Las Palmas de G.C. Fac. CC. Económicas. Módulo D. Campus de Tafira.)

Abstract

La estadística actuarial ha abordado el problema de la tarificación en los seguros de no vida desde un punto de vista clásico y bayesiano clásico. En los primeros el parámetro de riesgo se considera conocido, mientras que en los segundos se considera aleatorio. En este trabajo se estudia la prima obtenida siguiendo ambas metodologías en el modelo colectivo de la teoría del riesgo. La utilización de la metodología bayesiana supone una confianza absoluta en la distribución a priori del parámetro de riesgo, y esto ha sido ampliamente criticado por los estadísticos no bayesianos. Para salvar esta situación, y utilizando la metodología de robustez bayesiana, mediremos la sensibilidad de la prima obtenida en un contexto bayesiano con respecto a perturbaciones en la distribución a priori del parámetro de riesgo, utilizando la clase de e-contaminación. Actuarial statistics have approached tariffication problem in no-life insurances from a Bayesian and classical point of view. From the classical point of view, parameter is known, while Bayesian statistics considere it random. In this work, we studied risk premium under both methodologies in the collective model of the Risk Theory. Bayesian methodology supposes an absolute confidence in the prior distribution of the risk parameter, and it has been widely criticized by the classical statisticians. To save this situation, and using the Bayesian sensitivity methodology, we will measure the sensitivity of Bayesian Premium with respect to disturbances in the prior distribution from the risk parameter using e-contaminated class.

Suggested Citation

  • Gómez Déniz, E. & Pérez Sánchez, J. M., 2001. "Fijación de primas de seguros bajo técnicas de robustez bayesiana," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 19, pages 5-20, Diciembre.
  • Handle: RePEc:lrk:eeaart:19_3_13
    as

    Download full text from publisher

    File URL: http://www.revista-eea.net
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    2. Eichenauer, Jurgen & Lehn, Jurgen & Rettig, Stefan, 1988. "A gamma-minimax result in credibility theory," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 49-57, January.
    3. Heilmann, Wolf-Rudiger, 1989. "Decision theoretic foundations of credibility theory," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 77-95, March.
    4. Young, Virginia R., 1999. "Optimal insurance under Wang's premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 109-122, November.
    5. Gomez-Deniz, E. & Hernandez-Bastida, A. & Vazquez-Polo, F. J., 1999. "The Esscher premium principle in risk theory: a Bayesian sensitivity study," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 387-395, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Credibility Theory; Premium Calculation Principle; Bayesian Robustness; e-Contamination Class.;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:19_3_13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado). General contact details of provider: http://edirc.repec.org/data/fcvldes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.