IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0284293.html
   My bibliography  Save this article

A novel encoder-decoder model based on Autoformer for air quality index prediction

Author

Listed:
  • Huifang Feng
  • Xianghong Zhang

Abstract

Rapid economic development has led to increasingly serious air quality problems. Accurate air quality prediction can provide technical support for air pollution prevention and treatment. In this paper, we proposed a novel encoder-decoder model named as Enhanced Autoformer (EnAutoformer) to improve the air quality index (AQI) prediction. In this model, (a) The enhanced cross-correlation (ECC) is proposed for extracting the temporal dependencies in AQI time series; (b) Combining the ECC with the cross-stage feature fusion mechanism of CSPDenseNet, the core module CSP_ECC is proposed for improving the computational efficiency of the EnAutoformer. (c) The time series decomposition and dilated causal convolution added in the decoder module are exploited to extract the finer-grained features from the original AQI data and improve the performance of the proposed model for long-term prediction. The real-world air quality datasets collected from Lanzhou are used to validate the performance of our prediction model. The experimental results show that our EnAutoformer model can greatly improve the prediction accuracy compared to the baselines and can be used as a promising alternative for complex air quality prediction.

Suggested Citation

  • Huifang Feng & Xianghong Zhang, 2023. "A novel encoder-decoder model based on Autoformer for air quality index prediction," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-18, April.
  • Handle: RePEc:plo:pone00:0284293
    DOI: 10.1371/journal.pone.0284293
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284293
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0284293&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0284293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    2. Lu Bai & Jianzhou Wang & Xuejiao Ma & Haiyan Lu, 2018. "Air Pollution Forecasts: An Overview," IJERPH, MDPI, vol. 15(4), pages 1-44, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih‐Hsuan Wang & Chia‐Rong Chang, 2023. "Forecasting air quality index considering socioeconomic indicators and meteorological factors: A data granularity perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1261-1274, August.
    2. Lin Wang & Wuyue An & Feng‐Ting Li, 2024. "Text‐based corn futures price forecasting using improved neural basis expansion network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2042-2063, September.
    3. Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
    4. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    5. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    6. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    7. Zongwei Zhang & Lianlei Lin & Sheng Gao & Junkai Wang & Hanqing Zhao & Hangyi Yu, 2025. "A machine learning model for hub-height short-term wind speed prediction," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    8. Shengcai Zhang & Changsheng Zhu & Xiuting Guo, 2024. "Wind-Speed Multi-Step Forecasting Based on Variational Mode Decomposition, Temporal Convolutional Network, and Transformer Model," Energies, MDPI, vol. 17(9), pages 1-22, April.
    9. Geng, Donghan & Zhang, Yongkang & Zhang, Yunlong & Qu, Xingchuang & Li, Longfei, 2025. "A hybrid model based on CapSA-VMD-ResNet-GRU-attention mechanism for ultra-short-term and short-term wind speed prediction," Renewable Energy, Elsevier, vol. 240(C).
    10. Emanoel L. R. Costa & Taiane Braga & Leonardo A. Dias & Édler L. de Albuquerque & Marcelo A. C. Fernandes, 2022. "Analysis of Atmospheric Pollutant Data Using Self-Organizing Maps," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    11. Zhang, Yagang & Kong, Xue & Wang, Jingchao & Wang, Hui & Cheng, Xiaodan, 2024. "Wind power forecasting system with data enhancement and algorithm improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    12. Joseph, Lionel P. & Deo, Ravinesh C. & Casillas-Pérez, David & Prasad, Ramendra & Raj, Nawin & Salcedo-Sanz, Sancho, 2024. "Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model," Applied Energy, Elsevier, vol. 359(C).
    13. Sun, Xiaoying & Liu, Haizhong, 2024. "Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S," Energy, Elsevier, vol. 305(C).
    14. Xinyue Mo & Lei Zhang & Huan Li & Zongxi Qu, 2019. "A Novel Air Quality Early-Warning System Based on Artificial Intelligence," IJERPH, MDPI, vol. 16(19), pages 1-25, September.
    15. Niu, Zhewen & Han, Xiaoqing & Zhang, Dongxia & Wu, Yuxiang & Lan, Songyan, 2024. "Interpretable wind power forecasting combining seasonal-trend representations learning with temporal fusion transformers architecture," Energy, Elsevier, vol. 306(C).
    16. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Fan & Hu, Qinghua, 2024. "Dynamic non-constraint ensemble model for probabilistic wind power and wind speed forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    17. K. R. Sri Preethaa & Akila Muthuramalingam & Yuvaraj Natarajan & Gitanjali Wadhwa & Ahmed Abdi Yusuf Ali, 2023. "A Comprehensive Review on Machine Learning Techniques for Forecasting Wind Flow Pattern," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    18. Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
    19. Hung-Ta Wen & Jau-Huai Lu & Deng-Siang Jhang, 2021. "Features Importance Analysis of Diesel Vehicles’ NO x and CO 2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    20. Huang, Mengqi & Peng, Changhong & DU, Zhengyu & Liu, Yu, 2024. "A power regulation strategy for heat pipe cooled reactors based on deep learning and hybrid data-driven optimization algorithm," Energy, Elsevier, vol. 289(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0284293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.